Carr Joseph F, Rudolf Jennifer S, Warzecha Daniel J, Rezenom Yohannes H, Mitchell Angela M
bioRxiv. 2025 Jun 25:2025.06.25.661564. doi: 10.1101/2025.06.25.661564.
Bacteria of the order (e.g., ) produce an invariant glycan, enterobacterial common antigen (ECA), that plays a role in maintaining outer membrane (OM) impermeability. ECA is found as the headgroup of a phospholipid and attached to LPS in the OM, and as a periplasmic cyclic form (ECA ). WzyE polymerizes ECA repeat units to form the ECA chain with final chain length regulated by WzzE, a class 1 polysaccharide co-polymerase (PCP1). PCP1 function studies have shown interaction of the PCP1 transmembrane helices with the polymerase and a secondary activity found in the periplasmic domain of the PCP1 are required for chain-length regulation. However, WzzE is also necessary for ECA biosynthesis, and it remains unclear why loss of WzzE prevents ECA production but not linear ECA production. Here, we constructed plasmid-based and chromosomal mutants in K-12 with alterations that affect chain-length regulation of other PCP1 and assessed their effects on ECA biogenesis. Our data show loss of chain-length regulation and ECA synthesis from mutations altering transmembrane helix 2 and mutations altering the periplasmic domain of WzzE. We also identified two WzzE variants to the same residue with identical, near wild type linear ECA chain-length regulation but differing effects on ECA production. Specifically, WzzE produces wild-type levels of ECA , while WzzE produces twofold less ECA than wild type, demonstrating ECA synthesis is genetically separable from chain length regulation. Overall, our results show that chain-length regulation by WzzE is necessary but not sufficient for normal production of ECA .
The gram-negative cell envelope acts as a permeability barrier excluding many antibiotics. Therefore, understanding envelope synthesis pathways has the potential to identify targets for new antimicrobials. Here, we investigated synthesis requirements for an invariant carbohydrate found throughout cyclic enterobacterial common antigen (ECA ), which is important for maintaining the envelope permeability barrier and relies on a polymerase (WzyE) and co-polymerase (WzzE) for synthesis. We found ECA synthesis depends on WzzE regions necessary for interaction with WzyE and for chain-length regulation. However, we can genetically separate phenotypes of ECA production and chain-length regulation. These data shed light on mechanisms contributing to the envelope permeability barrier and on why the WzyE-WzzE system synthesizes a cyclic carbohydrate while other Wzy-Wzz systems do not.
(例如)目细菌产生一种不变聚糖,即肠杆菌共同抗原(ECA),它在维持外膜(OM)不透性方面发挥作用。ECA以磷脂的头部基团形式存在,并附着于OM中的脂多糖上,同时也以周质环状形式(ECA )存在。WzyE将ECA重复单元聚合形成ECA链,最终链长由1类多糖共聚合酶(PCP1)WzzE调节。PCP1功能研究表明,PCP1跨膜螺旋与聚合酶的相互作用以及在PCP1周质结构域中发现的二级活性是链长调节所必需的。然而,WzzE对于ECA 的生物合成也是必需的,目前尚不清楚为什么WzzE的缺失会阻止ECA 的产生,但不会阻止线性ECA的产生。在这里,我们构建了基于质粒和染色体的 K-12突变体,其改变影响了其他PCP1的链长调节,并评估了它们对ECA 生物合成的影响。我们的数据表明,改变跨膜螺旋2的突变和改变WzzE周质结构域的突变会导致链长调节丧失和ECA 合成减少。我们还鉴定了两个WzzE变体,它们在相同残基处具有相同的、接近野生型的线性ECA链长调节,但对ECA 产生的影响不同。具体而言,WzzE 产生野生型水平的ECA ,而WzzE 产生的ECA 比野生型少两倍,这表明ECA 合成在遗传上可与链长调节分离。总体而言,我们的结果表明,WzzE对链长的调节对于ECA 的正常产生是必要的,但不是充分的。
革兰氏阴性菌的细胞包膜作为一种渗透屏障,可排除许多抗生素。因此,了解包膜合成途径有可能识别新抗菌药物的靶点。在这里,我们研究了整个循环肠杆菌共同抗原(ECA )中发现的一种不变碳水化合物的合成要求,它对于维持包膜渗透屏障很重要,并且依赖于一种聚合酶(WzyE)和共聚合酶(WzzE)进行合成。我们发现ECA 合成取决于WzzE与WzyE相互作用以及链长调节所必需的区域。然而,我们可以在遗传上分离ECA 产生和链长调节的表型。这些数据揭示了有助于包膜渗透屏障的机制,以及为什么WzyE-WzzE系统合成一种环状碳水化合物,而其他Wzy-Wzz系统则不合成。