Suppr超能文献

通过影像组学和深度学习区分有症状和无症状的三叉神经:特发性三叉神经痛患者与无症状对照组的微观结构研究

Distinguishing symptomatic and asymptomatic trigeminal nerves through radiomics and deep learning: A microstructural study in idiopathic TN patients and asymptomatic control group.

作者信息

Cüce Ferhat, Tulum Gokalp, Karadaş Ömer, Işik Muhammet İkbal, Dur İnce Merve, Nematzadeh Sajjad, Jalili Marziye, Baş Niray, Özcan Berza, Osman Onur

机构信息

Sağlık Bilimleri Üniversitesi, Istanbul, Turkey.

Topkapi University, İstanbul, Turkey.

出版信息

Neuroradiology. 2025 Jul 16. doi: 10.1007/s00234-025-03691-1.

Abstract

PURPOSE

The relationship between mild neurovascular conflict (NVC) and trigeminal neuralgia (TN) remains ill-defined, especially as mild NVC is often seen in asymptomatic population without any facial pain. We aim to analyze the trigeminal nerve microstructure using artificial intelligence (AI) to distinguish symptomatic and asymptomatic nerves between idiopathic TN (iTN) and the asymptomatic control group with incidental grade‑1 NVC.

METHODS

Seventy-eight symptomatic trigeminal nerves with grade-1 NVC in iTN patients, and an asymptomatic control group consisting of Bell's palsy patients free from facial pain (91 grade-1 NVC and 91 grade-0 NVC), were included in the study. Three hundred seventy-eight radiomic features were extracted from the original MRI images and processed with Laplacian-of-Gaussian filters. The dataset was split into 80% training/validation and 20% testing. Nested cross-validation was employed on the training/validation set for feature selection and model optimization. Furthermore, using the same pipeline approach, two customized deep learning models, Dense Atrous Spatial Pyramid Pooling (ASPP) -201 and MobileASPPV2, were classified using the same pipeline approach, incorporating ASPP blocks.

RESULTS

Performance was assessed over ten and five runs for radiomics-based and deep learning-based models. Subspace Discriminant Ensemble Learning (SDEL) attained an accuracy of 78.8%±7.13%, Support Vector Machines (SVM) reached 74.8%±9.2%, and K-nearest neighbors (KNN) achieved 79%±6.55%. Meanwhile, DenseASPP-201 recorded an accuracy of 82.0 ± 8.4%, and MobileASPPV2 achieved 73.2 ± 5.59%.

CONCLUSION

The AI effectively distinguished symptomatic and asymptomatic nerves with grade‑1 NVC. Further studies are required to fully elucidate the impact of vascular and nonvascular etiologies that may lead to iTN.

摘要

目的

轻度神经血管冲突(NVC)与三叉神经痛(TN)之间的关系仍不明确,尤其是因为轻度NVC在无面部疼痛的无症状人群中经常可见。我们旨在使用人工智能(AI)分析三叉神经微观结构,以区分特发性TN(iTN)患者的有症状神经和无症状神经以及伴有偶发性1级NVC的无症状对照组。

方法

本研究纳入了78例iTN患者中伴有1级NVC的有症状三叉神经,以及一个由无面部疼痛的贝尔麻痹患者组成的无症状对照组(91例1级NVC和91例0级NVC)。从原始MRI图像中提取378个放射组学特征,并用高斯-拉普拉斯滤波器进行处理。数据集被分为80%的训练/验证集和20%的测试集。在训练/验证集上采用嵌套交叉验证进行特征选择和模型优化。此外,使用相同的流水线方法,采用包含空洞空间金字塔池化(ASPP)模块的相同流水线方法对两个定制的深度学习模型——密集空洞空间金字塔池化(ASPP)-201和MobileASPPV2进行分类。

结果

基于放射组学的模型和基于深度学习的模型分别在10次和5次运行中评估性能。子空间判别集成学习(SDEL)的准确率为78.8%±7.13%,支持向量机(SVM)达到74.8%±9.2%,K近邻(KNN)达到79%±6.55%。同时,密集ASPP-201的准确率为82.0±8.4%,MobileASPPV2为73.2±5.59%。

结论

人工智能有效地区分了伴有1级NVC的有症状神经和无症状神经。需要进一步研究以充分阐明可能导致iTN的血管和非血管病因的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验