Li Pan, Lee Sangbo, Choi Kwang-Yeon, Rubin Jonathan E, Kim Jae Kyoung
Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea.
Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
PLoS Comput Biol. 2025 Jul 16;21(7):e1013318. doi: 10.1371/journal.pcbi.1013318. eCollection 2025 Jul.
Seizure-induced cardiac arrhythmias, such as ictal (during seizure) or postictal (post-seizure) sinus arrhythmias, are potential triggers for sudden unexpected death in epilepsy. Traditionally, these arrhythmias have been attributed to changes in autonomic balance during ictal or postictal phases, as per the neurogenic mechanism. However, it remains unclear if these arrhythmias may involve intrinsic cardiogenic mechanisms. Furthermore, while circadian and sleep-wake patterns influence both neurogenic and cardiogenic mechanisms, a direct mechanistic link to seizure-induced arrhythmias remains to be established. In this study, we utilized a mathematical model of mouse sinoatrial nodal cell pacemaking and an autonomic clamping protocol, to dissect neurocardiogenic mechanisms in seizure-induced sinus arrhythmias and to test the hypothesis that circadian and sleep-wake rhythms directly modulate cellular susceptibility to these arrhythmias. Our simulations revealed that, in the context of altered autonomic levels associated with seizure progression, diverse seizure-induced sinoatrial nodal cell firing patterns during ictal or postictal phases can be triggered directly by intrinsic cardiac dynamics, without the need for dynamical changes in within-phase autonomic activities. This finding highlights the distinct roles of neurogenic and cardiogenic mechanisms in shaping sinoatrial nodal cell firing patterns, challenging the predominance of the neurogenic mechanism. This neurocardiogenic framework also successfully captures distinct circadian and vigilance state patterns of seizure-induced arrhythmias. Specifically, while daytime sleep predisposed sinoatrial nodal cells to postictal sinus arrhythmias, nighttime wakefulness promotes ictal sinus arrhythmias. However, these circadian patterns can be disrupted when sleep-wake cycles are decoupled from circadian rhythms, supporting the hypothesis that sleep-wake patterns can directly be a key determinant of seizure-induced sinus arrhythmias. Our findings may facilitate the development of novel therapeutic strategies for managing the risk of sudden unexpected death in epilepsy.
癫痫发作诱发的心律失常,如发作期(癫痫发作期间)或发作后期(癫痫发作后)窦性心律失常,是癫痫患者突然意外死亡的潜在诱因。传统上,根据神经源性机制,这些心律失常被归因于发作期或发作后期自主神经平衡的变化。然而,目前尚不清楚这些心律失常是否涉及内在的心源性机制。此外,虽然昼夜节律和睡眠-觉醒模式会影响神经源性和心源性机制,但与癫痫发作诱发的心律失常之间的直接机制联系仍有待确立。在本研究中,我们利用小鼠窦房结细胞起搏的数学模型和自主神经钳夹方案,剖析癫痫发作诱发窦性心律失常的神经心源性机制,并检验昼夜节律和睡眠-觉醒节律直接调节细胞对这些心律失常易感性的假设。我们的模拟结果显示,在与癫痫发作进展相关的自主神经水平改变的情况下,发作期或发作后期不同的癫痫发作诱发的窦房结细胞放电模式可直接由心脏内在动力学触发,而无需同相自主神经活动的动态变化。这一发现突出了神经源性和心源性机制在塑造窦房结细胞放电模式中的不同作用,对神经源性机制的主导地位提出了挑战。这种神经心源性框架还成功捕捉到了癫痫发作诱发心律失常的不同昼夜节律和警觉状态模式。具体而言,白天睡眠使窦房结细胞易发生发作后窦性心律失常,而夜间觉醒则促进发作期窦性心律失常。然而,当睡眠-觉醒周期与昼夜节律解耦时,这些昼夜节律模式可能会被打乱,这支持了睡眠-觉醒模式可能直接是癫痫发作诱发窦性心律失常关键决定因素的假设。我们的研究结果可能有助于开发新的治疗策略,以管理癫痫患者突然意外死亡的风险。
PLoS Comput Biol. 2025-7-16
2025-1
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2017-10-5
Cochrane Database Syst Rev. 2017-2-27
Arch Ital Urol Androl. 2025-6-30
PLoS Comput Biol. 2024-3
PLoS Comput Biol. 2023-10
Epilepsy Behav. 2023-4
Sleep Sci. 2022