梨状皮质中的表征漂移与学习诱导的稳定性

Representational drift and learning-induced stabilization in the piriform cortex.

作者信息

Morales Guillermo B, Muñoz Miguel A, Tu Yuhai

机构信息

Departamento de Electromagnetismo y Física de la Materia, Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada E-18071, Spain.

International Business Machines T. J. Watson Research Center, Yorktown Heights, NY 10598.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2501811122. doi: 10.1073/pnas.2501811122. Epub 2025 Jul 16.

Abstract

The brain encodes external stimuli through patterns of neural activity, forming internal representations of the world. Increasing experimental evidence showed that neural representations for a specific stimulus can change over time in a phenomenon called "representational drift" (RD). However, the underlying mechanisms for this widespread phenomenon remain poorly understood. Here, we study RD in the piriform cortex of the olfactory system with a realistic neural network model that incorporates two general mechanisms for synaptic weight dynamics operating at two well-separated timescales: spontaneous multiplicative fluctuations on a scale of days and spike-timing-dependent plasticity (STDP) effects on a scale of seconds. We show that the slow multiplicative fluctuations in synaptic sizes, which lead to a steady-state distribution of synaptic weights consistent with experiments, can induce RD effects that are in quantitative agreement with recent empirical evidence. Furthermore, our model reveals that the fast STDP learning dynamics during presentation of a given odor drives the system toward a low-dimensional representational manifold, which effectively reduces the dimensionality of synaptic weight fluctuations and thus suppresses RD. Specifically, our model explains why representations of already "learned" odors drift slower than unfamiliar ones, as well as the dependence of the drift rate with the frequency of stimulus presentation-both of which align with recent experimental data. The proposed model not only offers a simple explanation for the emergence of RD and its relation to learning in the piriform cortex, but also provides a general theoretical framework for studying representation dynamics in other neural systems.

摘要

大脑通过神经活动模式对外部刺激进行编码,形成对世界的内部表征。越来越多的实验证据表明,特定刺激的神经表征会随着时间的推移在一种被称为“表征漂移”(RD)的现象中发生变化。然而,这种普遍现象的潜在机制仍知之甚少。在这里,我们使用一个逼真的神经网络模型研究嗅觉系统梨状皮质中的RD,该模型纳入了两种在两个明显不同时间尺度上运行的突触权重动态的一般机制:以天为尺度的自发乘法波动和以秒为尺度的尖峰时间依赖性可塑性(STDP)效应。我们表明,突触大小的缓慢乘法波动导致与实验一致的突触权重稳态分布,可诱导出与最近经验证据在数量上一致的RD效应。此外,我们的模型揭示,在给定气味呈现期间快速的STDP学习动态将系统驱动到一个低维表征流形,这有效地降低了突触权重波动的维度,从而抑制了RD。具体而言,我们的模型解释了为什么已经“学习”的气味的表征比不熟悉的气味漂移得慢,以及漂移率与刺激呈现频率的依赖性——这两者都与最近的实验数据一致。所提出的模型不仅为梨状皮质中RD的出现及其与学习的关系提供了一个简单的解释,还为研究其他神经系统中的表征动态提供了一个通用的理论框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索