Center for Theoretical Neuroscience, Columbia University, New York City, United States.
Center for Theoretical Neuroscience, Columbia University, New York City, United States.
Curr Opin Neurobiol. 2021 Oct;70:137-144. doi: 10.1016/j.conb.2021.10.010. Epub 2021 Nov 19.
Advances in experimental neuroscience have transformed our ability to explore the structure and function of neural circuits. At the same time, advances in machine learning have unleashed the remarkable computational power of artificial neural networks (ANNs). While these two fields have different tools and applications, they present a similar challenge: namely, understanding how information is embedded and processed through high-dimensional representations to solve complex tasks. One approach to addressing this challenge is to utilize mathematical and computational tools to analyze the geometry of these high-dimensional representations, i.e., neural population geometry. We review examples of geometrical approaches providing insight into the function of biological and artificial neural networks: representation untangling in perception, a geometric theory of classification capacity, disentanglement, and abstraction in cognitive systems, topological representations underlying cognitive maps, dynamic untangling in motor systems, and a dynamical approach to cognition. Together, these findings illustrate an exciting trend at the intersection of machine learning, neuroscience, and geometry, in which neural population geometry provides a useful population-level mechanistic descriptor underlying task implementation. Importantly, geometric descriptions are applicable across sensory modalities, brain regions, network architectures, and timescales. Thus, neural population geometry has the potential to unify our understanding of structure and function in biological and artificial neural networks, bridging the gap between single neurons, population activities, and behavior.
实验神经科学的进展改变了我们探索神经回路结构和功能的能力。与此同时,机器学习的进展释放了人工神经网络 (ANNs) 的强大计算能力。虽然这两个领域有不同的工具和应用,但它们提出了一个相似的挑战:即理解信息如何通过高维表示嵌入和处理,以解决复杂任务。解决这一挑战的一种方法是利用数学和计算工具来分析这些高维表示的几何结构,即神经群体几何。我们回顾了一些几何方法的例子,这些方法提供了对生物和人工神经网络功能的深入了解:感知中的表示解开、分类能力的几何理论、认知系统中的解缠和抽象、认知图的拓扑表示、运动系统中的动态解开以及认知的动力学方法。这些发现共同说明了机器学习、神经科学和几何学交叉点的一个令人兴奋的趋势,即神经群体几何为任务实现提供了一个有用的群体水平机制描述符。重要的是,几何描述适用于各种感觉模态、脑区、网络架构和时间尺度。因此,神经群体几何有可能将我们对生物和人工神经网络的结构和功能的理解统一起来,弥合单个神经元、群体活动和行为之间的差距。