Verma Shreya, D'Cunha Ruhee, Mitra Abhishek, Hermes Matthew, Gray Stephen K, Otten Matthew, Gagliardi Laura
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.
J Chem Theory Comput. 2025 Aug 12;21(15):7460-7470. doi: 10.1021/acs.jctc.5c00745. Epub 2025 Jul 16.
We present a polynomial-scaling algorithm for the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. In this approach, cluster excitations are selected based on a threshold ϵ determined by the absolute gradients of the LAS-UCCSD energy with respect to cluster amplitudes. Using the generalized Wick's theorem for multireference wave functions, we derive the gradient expression as a polynomial function of one-, two-, and three-body reduced density matrices and 1- and 2-electron integrals, valid for any multireference wave function. The resulting gradient implementation exhibits a memory scaling of (), with spin orbitals in the combined active space of all fragments. The variational quantum eigensolver is used to optimize the selected cluster excitations on a quantum simulator. By plotting the energy error, defined as the difference between the LAS-USCCSD and corresponding CASCI energies, against the inverse cluster amplitude selection threshold (ϵ) for polyene chains containing 2 to 5 π-bond units, we establish a relationship between the energy error and the threshold. To further validate the accuracy of LAS-USCCSD, we computed the cis-trans isomerization energy of stilbene (a 20-qubit system) and the magnetic coupling constant of the tris-hydroxo-bridged chromium dimer [Cr(OH)(NH)] (evaluated as both 12- and 20-qubit systems) using the Qiskit-Qulacs simulator. Assessing such examples is important to determine the practical feasibility of quantum simulations for chemically realistic systems. Toward this goal, with the LAS-USCCSD algorithm we estimated the quantum resources required for simulating an active space of (30e,22o) in [Cr(OH)(NH)], a size that remains beyond the reach of current quantum simulators for accurate treatment.
我们提出了一种用于局域活性空间幺正选择性耦合簇单双激发(LAS-USCCSD)方法的多项式缩放算法。在这种方法中,基于由LAS-UCCSD能量相对于簇振幅的绝对梯度确定的阈值ϵ来选择簇激发。利用多参考波函数的广义维克定理,我们将梯度表达式推导为一体、二体和三体约化密度矩阵以及单电子和双电子积分的多项式函数,该表达式对任何多参考波函数均有效。所得的梯度实现表现出()的内存缩放,其中自旋轨道位于所有片段的组合活性空间中。变分量子本征求解器用于在量子模拟器上优化所选的簇激发。通过针对包含2至5个π键单元的多烯链,绘制定义为LAS-USCCSD与相应的完全活性空间自洽场(CASCI)能量之差的能量误差与簇振幅选择阈值(ϵ)的倒数的关系图,我们建立了能量误差与阈值之间的关系。为了进一步验证LAS-USCCSD的准确性,我们使用Qiskit-Qulacs模拟器计算了二苯乙烯(一个20量子比特系统)的顺反异构化能以及三羟基桥联铬二聚体[Cr(OH)(NH)]的磁耦合常数(评估为12量子比特和20量子比特系统)。评估此类示例对于确定化学实际系统量子模拟的实际可行性很重要。为了实现这一目标,使用LAS-USCCSD算法,我们估计了在[Cr(OH)(NH)]中模拟(30e,22o)活性空间所需的量子资源,该规模目前的量子模拟器仍难以精确处理。