Suppr超能文献

食酸戴尔福特菌DSM 545利用乳清渗透液可持续生产聚羟基脂肪酸酯

Sustainable Polyhydroxyalkanoates production by Cupriavidus necator DSM 545 from whey permeate.

作者信息

Basaglia Marina, Casella Sergio, Franzosi Giuliana, Favaro Lorenzo

机构信息

Waste to Bioproducts Lab, DAFNAE - Department of Agronomy Food Natural Resources Animals and Environment, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.

Waste to Bioproducts Lab, DAFNAE - Department of Agronomy Food Natural Resources Animals and Environment, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.

出版信息

Int J Biol Macromol. 2025 Aug;320(Pt 3):146024. doi: 10.1016/j.ijbiomac.2025.146024. Epub 2025 Jul 14.

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers with the potential to replace fossil-based plastics. However, their widespread adoption is currently limited by the high cost of carbon substrates. Whey permeate is rich in lactose and minerals and thus represents a potential sustainable carbon source. Cupriavidus necator is commonly used for PHAs production; however, its inability to utilize lactose significantly limits PHAs yields from dairy residues. In this study, lactose from permeate was enzymatically hydrolyzed into glucose and galactose using Maxilact® LGI 5000, an industrial β-galactosidase formulation. After determining the optimal conditions for the use of Maxilact® LGI 5000, the growth of C. necator DSM 545 was evaluated in minimal medium supplemented with enzymatically treated whey permeate. In the hydrolyzed permeate, the biomass and accumulated PHAs reached values above 5 g/L and around 60 % of cell dry weight (CDW), respectively, comparable or even higher than the yields obtained in the benchmark experiment with pure sugars. A Simultaneous Saccharification and Fermentation (SSF) setup was also adopted and provided a more streamlined approach to bioconversion. In conclusion, although further optimization of the process conditions is necessary, these results indicate that the use of whey permeate combined with β-galactosidase can greatly enhance PHAs production.

摘要

聚羟基脂肪酸酯(PHA)是一种可生物降解的生物聚合物,有潜力替代化石基塑料。然而,目前其广泛应用受到碳底物高成本的限制。乳清渗透液富含乳糖和矿物质,因此是一种潜在的可持续碳源。食酸戴尔福特菌通常用于生产PHA;然而,其无法利用乳糖显著限制了乳制品残渣中PHA的产量。在本研究中,使用工业β-半乳糖苷酶制剂Maxilact® LGI 5000将渗透液中的乳糖酶解为葡萄糖和半乳糖。在确定了使用Maxilact® LGI 5000的最佳条件后,在添加了酶处理过的乳清渗透液的基本培养基中评估了食酸戴尔福特菌DSM 545的生长情况。在水解后的渗透液中,生物量和积累的PHA分别达到5 g/L以上和细胞干重(CDW)的60%左右,与使用纯糖进行的基准实验中获得的产量相当甚至更高。还采用了同步糖化发酵(SSF)装置,为生物转化提供了一种更简化的方法。总之,尽管有必要进一步优化工艺条件,但这些结果表明,将乳清渗透液与β-半乳糖苷酶结合使用可以大大提高PHA的产量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验