Suppr超能文献

用于绘制泰利安山脉链滑坡易发性地图的层次分析法多标准分析

AHP multi criteria analysis for landslide susceptibility mapping in the Tellian Atlas chain.

作者信息

Zighmi Karim, Zahri Farid, Faqeih Khadeijah, Al Amri Afaf, Riheb Hadji, Alamri Somayah Moshrif, Alamery Eman

机构信息

Department of Earth Sciences, Institute of Architecture and Earth Sciences, Ferhat Abbas University, Setif, 19137, Algeria.

Laboratory of Applied Research in Engineering Geology, Geotechnics, Water Sciences, and Environment, Ferhat Abbas University, Setif, Algeria.

出版信息

Sci Rep. 2025 Jul 16;15(1):25747. doi: 10.1038/s41598-025-10819-z.

Abstract

Algeria's Tellian Atlas, characterized by steep topography and complex geology, is particularly susceptible to landslides, necessitating robust hazard assessment frameworks. This study develops a landslide susceptibility map (LSM) using a GIS-based multi-criteria approach integrating statistical evaluation and expert judgment. A detailed landslide inventory, comprising 501 documented events, was established through high-resolution satellite imagery, aerial photographs, and field verification. Eleven conditioning factors were considered (slope angle, aspect, elevation, curvature, lithology, precipitation, and distances to faults, rivers, and roads, as well as stream power index (SPI) and topographic wetness index (TWI)) derived from remote sensing data, geological maps, and meteorological records. These variables were standardized and analyzed using the analytical hierarchy process (AHP), which generated relative weights through pairwise comparisons. A multicollinearity analysis was conducted to ensure statistical robustness, with factors displaying variance inflation values below critical thresholds. The resulting LSM was validated using a receiver operating characteristic (ROC) curve, yielding an area under the curve (AUC) value of 0.75, indicating good predictive performance. The findings reveal that areas with steep slopes, clay-rich lithologies, and proximity to tectonic features exhibit the highest susceptibility. The LSM offers a valuable tool for spatial planning, early warning systems, and risk mitigation strategies, particularly in the face of increasing climatic extremes that intensify landslide triggers. This integrative approach not only enhances geohazard management in mountainous terrains but also provides a replicable framework for similar environments globally, contributing to the broader goal of sustainable land use and disaster resilience.

摘要

阿尔及利亚的泰勒阿特拉斯地区地形陡峭,地质复杂,特别容易发生山体滑坡,因此需要强大的灾害评估框架。本研究采用基于地理信息系统(GIS)的多标准方法,结合统计评估和专家判断,绘制了山体滑坡易发性地图(LSM)。通过高分辨率卫星图像、航空照片和实地核查,建立了一个详细的山体滑坡清单,其中包括501起有记录的事件。研究考虑了11个控制因素(坡度、坡向、海拔、曲率、岩性、降水量以及到断层、河流和道路的距离,以及由遥感数据、地质图和气象记录得出的河流功率指数(SPI)和地形湿度指数(TWI))。这些变量经过标准化处理,并使用层次分析法(AHP)进行分析,该方法通过两两比较生成相对权重。进行了多重共线性分析以确保统计稳健性,各因素的方差膨胀值均低于临界阈值。使用受试者工作特征(ROC)曲线对所得的LSM进行验证,曲线下面积(AUC)值为0.75,表明预测性能良好。研究结果表明,坡度陡峭、富含粘土的岩性以及靠近构造特征的地区山体滑坡易发性最高。该LSM为空间规划、预警系统和风险缓解策略提供了一个有价值的工具,特别是在面对加剧山体滑坡触发因素的极端气候不断增加的情况下。这种综合方法不仅加强了山区的地质灾害管理,还为全球类似环境提供了一个可复制的框架,有助于实现可持续土地利用和灾害恢复力这一更广泛的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2118/12267847/b2c4825b303e/41598_2025_10819_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验