Suppr超能文献

引用本文的文献

本文引用的文献

1
Rules Describing CO Activation on Single-Atom Alloys from DFT-Meta-GGA Calculations and Artificial Intelligence.
ACS Catal. 2025 Feb 4;15(4):2916-2926. doi: 10.1021/acscatal.4c07178. eCollection 2025 Feb 21.
2
Accelerating the design of compositionally complex materials via physics-informed artificial intelligence.
Nat Comput Sci. 2023 Mar;3(3):198-209. doi: 10.1038/s43588-023-00412-7. Epub 2023 Mar 31.
3
In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science.
J Am Chem Soc. 2023 Oct 11;145(40):21699-21716. doi: 10.1021/jacs.3c04783. Epub 2023 Sep 27.
5
Persona of Transition Metal Ions in Solids: A Statistical Learning on Local Structures of Transition Metal Oxides.
Adv Sci (Weinh). 2022 Sep;9(27):e2202756. doi: 10.1002/advs.202202756. Epub 2022 Jul 24.
6
Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence.
ACS Catal. 2022 Feb 18;12(4):2223-2232. doi: 10.1021/acscatal.1c04793. Epub 2022 Jan 31.
7
Materials genes of heterogeneous catalysis from clean experiments and artificial intelligence.
MRS Bull. 2021;46(11):1016-1026. doi: 10.1557/s43577-021-00165-6. Epub 2021 Oct 1.
10
Bias free multiobjective active learning for materials design and discovery.
Nat Commun. 2021 Apr 19;12(1):2312. doi: 10.1038/s41467-021-22437-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验