Alshahrani Mohammed, Parikh Vedant, Foley Brandon, Verkhivker Gennady
bioRxiv. 2025 Jul 11:2025.07.10.664240. doi: 10.1101/2025.07.10.664240.
Understanding atomistic basis of multi-layer mechanisms employed by broadly reactive neutralizing antibodies of SARS-CoV-2 spike protein without directly blocking receptor engagement remains an important challenge in coronavirus immunology. Class 4 antibodies represent an intriguing case: they target a deeply conserved, cryptic epitope on the receptor-binding domain yet exhibit variable neutralization potency across subgroups F1 (CR3022, EY6A, COVA1-16), F2 (DH1047), and F3 (S2X259). In this study, we employed a multi-modal computational approach combining atomistic and coarse-grained simulations, mutational scanning of binding interfaces, binding free energy calculations, and allosteric modeling using dynamic network analysis to map the allosteric landscapes and binding hotspots of these antibodies. Through this approach, our data revealed that distal binding can influence ACE2 engagement and immune escape traits through the confluence of direct interfacial interactions and allosteric effects. We found that group F1 antibodies can operate via classic allostery by modulating flexibility in the receptor binding domain loop regions and indirectly interfering with ACE2 binding using long-range effects. Group F2 antibody DH1047 represents an intermediate mechanism, engaging residues T376, R408, V503, and Y508 hotspots which are both critical for ACE2 binding and under immune pressure. Mutational scanning and rigorous binding free energy calculations highlight the synergy between hydrophobic and electrostatic interactions, while dynamic network modeling reveals a shift toward localized communication pathways connecting the cryptic site to the ACE2 interface. Our results demonstrate how group F3 antibody S2X259 achieves efficient synergistic mechanism through confluence of direct competition with ACE2 and localized allosteric effects leading to stabilization of the spike protein at the cost of increased escape vulnerability. Dynamic network analysis identifies a shared "allosteric ring" embedded in the core of the receptor binding domain and serving a conserved structural scaffold mediating long-range signal propagation with antibody-specific extensions propagating toward the ACE2 interface. The findings of this study support a modular model of antibody-induced allostery where neutralization strategies evolve via refinement of peripheral network connections, rather than complete redesign of the epitope itself. Taken together, this study establishes a robust computational framework for atomistic understanding of mechanisms underlying neutralization activity and immune escape for class 4 antibodies which harness conformational dynamics, binding energetics, and allosteric modulation to influence viral entry. The findings highlight the modular evolution of neutralization strategies, where progressive refinement of peripheral interactions enhances potency but increases susceptibility to immune pressure.
在冠状病毒免疫学中,了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白广泛反应性中和抗体所采用的多层机制的原子基础,而不直接阻断受体结合,仍然是一项重大挑战。4类抗体是一个有趣的例子:它们靶向受体结合域上一个深度保守的隐蔽表位,但在F1(CR3022、EY6A、COVA1-16)、F2(DH1047)和F3(S2X259)亚组中表现出不同的中和效力。在本研究中,我们采用了一种多模态计算方法,结合原子和粗粒度模拟、结合界面的突变扫描、结合自由能计算以及使用动态网络分析的变构建模,来绘制这些抗体的变构图谱和结合热点。通过这种方法,我们的数据表明,远端结合可以通过直接界面相互作用和变构效应的汇合来影响血管紧张素转换酶2(ACE2)的结合和免疫逃逸特征。我们发现,F1组抗体可以通过调节受体结合域环区域的灵活性,并利用长程效应间接干扰ACE2结合,从而通过经典变构起作用。F2组抗体DH1047代表一种中间机制,它与残基T376、R408、V503和Y508热点结合,这些热点对ACE2结合至关重要且处于免疫压力之下。突变扫描和严格的结合自由能计算突出了疏水和静电相互作用之间的协同作用,而动态网络建模揭示了连接隐蔽位点与ACE2界面的局部通信途径的转变。我们的结果表明,F3组抗体S2X259如何通过与ACE2的直接竞争和局部变构效应的汇合,实现有效的协同机制,从而以增加逃逸易感性为代价稳定刺突蛋白。动态网络分析确定了一个嵌入受体结合域核心的共享“变构环”,它作为一个保守的结构支架,介导长程信号传播,抗体特异性延伸向ACE2界面传播。本研究的结果支持抗体诱导变构的模块化模型,其中中和策略通过优化外周网络连接而演变,而不是对表位本身进行完全重新设计。综上所述,本研究建立了一个强大的计算框架,用于从原子层面理解4类抗体中和活性和免疫逃逸的潜在机制,这些抗体利用构象动力学、结合能学和变构调节来影响病毒进入。研究结果突出了中和策略的模块化演变,其中外周相互作用的逐步优化提高了效力,但增加了对免疫压力的敏感性。