Alshahrani Mohammed, Parikh Vedant, Foley Brandon, Verkhivker Gennady
Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA.
Viruses. 2025 May 22;17(6):741. doi: 10.3390/v17060741.
In this study, we conducted a comprehensive analysis of the interactions between the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and four neutralizing antibodies-S309, S304, CYFN1006, and VIR-7229. Using integrative computational modeling that combined all-atom molecular dynamics (MD) simulations, mutational scanning, and MM-GBSA binding free energy calculations, we elucidated the structural, energetic, and dynamic determinants of antibody binding. Our findings reveal distinct dynamic binding mechanisms and evolutionary adaptation driving the broad neutralization effect of these antibodies. We show that S309 targets conserved residues near the ACE2 interface, leveraging synergistic van der Waals and electrostatic interactions, while S304 focuses on fewer but sensitive residues, making it more susceptible to escape mutations. The analysis of CYFN-1006.1 and CYFN-1006.2 antibody binding highlights broad epitope coverage with critical anchors at T345, K440, and T346, enhancing its efficacy against variants carrying the K356T mutation, which caused escape from S309 binding. Our analysis of broadly potent VIR-7229 antibody binding to XBB.1.5 and EG.5 Omicron variants emphasized a large and structurally complex epitope, demonstrating certain adaptability and compensatory effects to F456L and L455S mutations. Mutational profiling identified key residues crucial for antibody binding, including T345, P337, and R346 for S309 as well as T385 and K386 for S304, underscoring their roles as evolutionary "weak spots" that balance viral fitness and immune evasion. The results of the energetic analysis demonstrate a good agreement between the predicted binding hotspots, reveal distinct energetic mechanisms of binding, and highlight the importance of targeting conserved residues and diverse epitopes to counteract viral resistance.
在本研究中,我们对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白的受体结合域(RBD)与四种中和抗体——S309、S304、CYFN1006和VIR-7229之间的相互作用进行了全面分析。通过整合全原子分子动力学(MD)模拟、突变扫描和MM-GBSA结合自由能计算的计算建模方法,我们阐明了抗体结合的结构、能量和动力学决定因素。我们的研究结果揭示了不同的动态结合机制以及驱动这些抗体广泛中和作用的进化适应性。我们发现,S309靶向血管紧张素转换酶2(ACE2)界面附近的保守残基,利用协同的范德华力和静电相互作用,而S304聚焦于较少但敏感的残基,使其更容易受到逃逸突变的影响。对CYFN-1006.1和CYFN-1006.2抗体结合的分析突出了其广泛的表位覆盖范围,在T345、K440和T346处有关键锚定残基,增强了其对携带K356T突变变体的效力,该突变导致病毒逃逸S309的结合。我们对具有广泛效力的VIR-7229抗体与XBB.1.5和EG.5奥密克戎变体结合的分析强调了一个大的且结构复杂的表位,证明了其对F456L和L455S突变具有一定的适应性和补偿作用。突变谱分析确定了对抗体结合至关重要的关键残基,包括S309的T345、P337和R346以及S304的T385和K386,强调了它们作为进化“弱点”的作用,这些弱点平衡了病毒适应性和免疫逃逸。能量分析结果表明预测的结合热点之间具有良好的一致性,揭示了不同的结合能量机制,并突出了靶向保守残基和多样表位以对抗病毒抗性的重要性。