Meng John Hongyu, Wang Xiao-Jing
bioRxiv. 2025 Jul 10:2025.07.07.663505. doi: 10.1101/2025.07.07.663505.
1Corollary discharge denotes internal signals about the expected sensory consequences of one's own actions, leading to attenuation of sensory responses caused by self-produced stimulation. To investigate the underlying neural circuit mechanism, here we introduce a biologically plausible three-factor learning rule, where a global signal guides the updating of local inhibitory synapses to enable the computation of mismatch between a stimulus and its expectation or prediction. We show that our network model, endowed with positive and negative prediction error neurons, accounts for the salient physiological observations of motor-visual and motor-auditory mismatch responses in mice. Moreover, the model predicts that learning induces a bimodal distribution in activity correlation with stimulus and movement-induced prediction, supported by our analysis of neural data from a recent experiment. These results link global modulation to local learning for predictive error computation in the sensory areas, and shed insights into how disrupting inhibition impairs mismatch computation in specific ways.
伴随放电表示关于自身行为预期感觉后果的内部信号,导致由自身产生的刺激引起的感觉反应减弱。为了研究潜在的神经回路机制,我们在此引入一种生物学上合理的三因素学习规则,其中一个全局信号引导局部抑制性突触的更新,以实现刺激与其预期或预测之间不匹配的计算。我们表明,我们的网络模型配备了正、负预测误差神经元,解释了小鼠运动视觉和运动听觉不匹配反应的显著生理观察结果。此外,该模型预测,学习会在与刺激和运动诱导预测的活动相关性中诱导双峰分布,这得到了我们对最近一项实验的神经数据分析的支持。这些结果将全局调制与局部学习联系起来,用于感觉区域的预测误差计算,并深入了解破坏抑制如何以特定方式损害不匹配计算。