文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一项生物信息学分析,旨在系统揭示猴痘及其主要神经学表现背后的共同途径和分子机制。

A bioinformatic analysis to systematically unveil shared pathways and molecular mechanisms underlying monkeypox and its predominant neurological manifestations.

作者信息

Barjasteh Amir Hossein, Latifi Hanieh, Sepehrinezhad Ali

机构信息

Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.

Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

出版信息

Front Cell Infect Microbiol. 2025 Jul 2;15:1506687. doi: 10.3389/fcimb.2025.1506687. eCollection 2025.


DOI:10.3389/fcimb.2025.1506687
PMID:40673003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12263605/
Abstract

BACKGROUND: Monkeypox (MPOX) is a zoonotic disease caused by the MPOX virus (MPXV). MPOX resurfaced globally in May 2022, spreading throughout six WHO regions, resulting in nearly 87,000 cases and 112 deaths. Clinical symptoms include swollen lymph nodes, fever, joint pain and several neurological complications such as headache, encephalitis, myalgia, fatigue, photophobia and seizures. Despite these manifestations, the precise mechanisms of MPXV's neurotropism remain elusive. This study aimed to explore the genetic underpinnings of MPOX-related neurological manifestations, including headache, myalgia, fatigue, and photophobia, using advanced bioinformatics tools. METHODS: Data were sourced from the GeneCards database, which is an integrated database of human genes. Genes linked to MPOX and its neurological manifestations were identified and cross-referenced to uncover shared genes between these conditions. Network visualization was created using STRING, followed by topological analysis in Cytoscape to identify key genes based on degree and betweenness centrality. Functional enrichment analysis through ToppGene provided insights into molecular functions, biological processes, and cellular components associated with these target genes. Pathway analysis was performed using WikiPathways, and cell-type-specific enrichment was conducted using Enrichr. Additionally, we predicted functional microRNAs using mirTarbase and identified potential drug candidates via the Stitch database. RESULTS: We identified 32 MPOX-associated genes and a large set of neurological manifestation-related genes. Ten hub genes, including CD55, CXCL1, NFKB1, CXCL8, CD4, IL6, MX1, CFH, KLRK1, and CD46 were shared between MPOX and its neurological manifestations. Five novel genes, including CFHR3, C5AR1, C3AR1, IFNA2, and CXCL3 were predicted to be associated with MPOX and its neurological complications. Gene ontology analysis highlighted biological processes such as immune regulation, viral life cycle, and lymphocyte activation, while pathway enrichment identified critical signaling mechanisms like prostaglandin signaling, toll-like receptor 4 (TLR4) signaling, complement activation, and neuroinflammation. Moreover, cell types such as T-helper cells, natural killer cells, and microglia were found to be significantly impacted by MPOX and its frequent neurological complications. We identified 11 key microRNAs associated with MPOX-neurological manifestations and repurposed eight potential drugs, offering promising therapeutic strategies. CONCLUSION: This study emphasizes the central role of the complement system, immunological responses, and inflammatory pathways in the neurological manifestations of MPOX. The identification of novel genes and predicted therapeutic targets paves the way for future research and therapeutic interventions. Experimental validation is required to confirm these findings and determine the effectiveness of the proposed treatments.

摘要

背景:猴痘(MPOX)是一种由猴痘病毒(MPXV)引起的人畜共患病。2022年5月猴痘在全球范围内再度出现,传播至世界卫生组织的六个区域,导致近87000例病例和112例死亡。临床症状包括淋巴结肿大、发热、关节疼痛以及多种神经并发症,如头痛、脑炎、肌痛、疲劳、畏光和癫痫发作。尽管有这些表现,但MPXV的神经嗜性的确切机制仍不清楚。本研究旨在使用先进的生物信息学工具探索与MPOX相关的神经表现(包括头痛、肌痛、疲劳和畏光)的遗传基础。 方法:数据来源于基因卡片数据库,这是一个人类基因的综合数据库。识别与MPOX及其神经表现相关的基因并进行交叉引用,以发现这些病症之间的共享基因。使用STRING创建网络可视化,然后在Cytoscape中进行拓扑分析,以根据度和介数中心性识别关键基因。通过ToppGene进行功能富集分析,以深入了解与这些靶基因相关的分子功能、生物学过程和细胞成分。使用WikiPathways进行通路分析,并使用Enrichr进行细胞类型特异性富集。此外,我们使用mirTarbase预测功能性微小RNA,并通过Stitch数据库识别潜在的候选药物。 结果:我们识别出32个与MPOX相关的基因以及大量与神经表现相关的基因。MPOX及其神经表现之间共有10个枢纽基因,包括CD55、CXCL1、NFKB1、CXCL8、CD4、IL6、MX1、CFH、KLRK1和CD46。预测有5个新基因,包括CFHR3、C5AR1、C3AR1、IFNA2和CXCL3与MPOX及其神经并发症相关。基因本体分析突出了免疫调节、病毒生命周期和淋巴细胞活化等生物学过程,而通路富集识别出关键的信号传导机制,如前列腺素信号传导、Toll样受体4(TLR4)信号传导、补体激活和神经炎症。此外,发现T辅助细胞、自然杀伤细胞和小胶质细胞等细胞类型受到MPOX及其常见神经并发症的显著影响。我们识别出11个与MPOX神经表现相关的关键微小RNA,并重新利用了8种潜在药物,提供了有前景的治疗策略。 结论:本研究强调了补体系统、免疫反应和炎症通路在MPOX神经表现中的核心作用。新基因和预测治疗靶点的识别为未来的研究和治疗干预铺平了道路。需要进行实验验证以证实这些发现并确定所提议治疗方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/5407c3947dde/fcimb-15-1506687-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/1b0a403c46ed/fcimb-15-1506687-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/33666acca60e/fcimb-15-1506687-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/5a6e254e4644/fcimb-15-1506687-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/a9aa69d2c59c/fcimb-15-1506687-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/c507e3e05f5a/fcimb-15-1506687-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/8eb709446b10/fcimb-15-1506687-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/92b06ccef030/fcimb-15-1506687-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/29c94e433423/fcimb-15-1506687-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/2a0cc6f57c28/fcimb-15-1506687-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/5407c3947dde/fcimb-15-1506687-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/1b0a403c46ed/fcimb-15-1506687-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/33666acca60e/fcimb-15-1506687-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/5a6e254e4644/fcimb-15-1506687-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/a9aa69d2c59c/fcimb-15-1506687-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/c507e3e05f5a/fcimb-15-1506687-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/8eb709446b10/fcimb-15-1506687-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/92b06ccef030/fcimb-15-1506687-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/29c94e433423/fcimb-15-1506687-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/2a0cc6f57c28/fcimb-15-1506687-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4d7/12263605/5407c3947dde/fcimb-15-1506687-g010.jpg

相似文献

[1]
A bioinformatic analysis to systematically unveil shared pathways and molecular mechanisms underlying monkeypox and its predominant neurological manifestations.

Front Cell Infect Microbiol. 2025-7-2

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Elucidating the Mechanism of Xiaoqinglong Decoction in Chronic Urticaria Treatment: An Integrated Approach of Network Pharmacology, Bioinformatics Analysis, Molecular Docking, and Molecular Dynamics Simulations.

Curr Comput Aided Drug Des. 2025-7-16

[4]
Therapeutics for treating mpox in humans.

Cochrane Database Syst Rev. 2023-3-14

[5]
Exploring the shared molecular mechanisms of primary hypertension and IgA vasculitis through a case report and combining bioinformatics analysis.

Front Immunol. 2025-6-6

[6]
Epidemiology and phylogenomic characterisation of two distinct mpox outbreaks in Kinshasa, DR Congo, involving a new subclade Ia lineage: a retrospective, observational study.

Lancet. 2025-7-5

[7]
In-silico identification and experimental validation of shared genes and pathways to decipher the molecular links between COPD and MASLD.

Comput Biol Med. 2025-8

[8]
Identifying pyroptosis- and inflammation-related genes in spinal cord injury based on bioinformatics analysis.

Sci Rep. 2025-7-14

[9]
Unveiling the molecular mechanisms of human platelet lysate in enhancing endometrial receptivity.

Hum Reprod. 2025-7-15

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
Monkeypox virus spreads from cell-to-cell and leads to neuronal death in human neural organoids.

Nat Commun. 2025-6-30

[2]
Virus-specific CD4+ T cells contribute to clearance of human metapneumovirus despite exhibiting an impaired phenotype.

J Immunol. 2025-7-1

[3]
Early Diagnosis and Monitoring of Adaptive Immune Response in a Cohort of Mild Mpox Patients During the 2022 Wave.

Microorganisms. 2025-2-6

[4]
Diagnostic Value of SAA Levels and Perianal Symptoms in the Complicated Perianal Abscesses Among Mpox-Infected Patients.

J Inflamm Res. 2024-9-9

[5]
Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates.

Antiviral Res. 2024-11

[6]
Toll-like receptor 4 - a multifunctional virus recognition receptor.

Trends Microbiol. 2025-1

[7]
Microglia as potential key regulators in viral-induced neuroinflammation.

Front Cell Neurosci. 2024-7-11

[8]
Profiling of viral load, antibody and inflammatory response of people with monkeypox during hospitalization: a prospective longitudinal cohort study in China.

EBioMedicine. 2024-8

[9]
The pressing need for study on the effects of Mpox on the progression of vascular inflammation: A well-timed call.

Health Sci Rep. 2024-6-28

[10]
Implications of the 2023-2024 MPXV clade I outbreak in the Democratic Republic of Congo to global public health.

Clin Microbiol Infect. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索