Rocci Katherine S, Pierson Derek, Jevon Fiona V, Polussa Alexander, Oliverio Angela M, Bradford Mark A, Reich Peter B, Wieder William R
Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA.
Institute for Global Change Biology, University of Michigan, Ann Arbor, Michigan, USA.
Glob Chang Biol. 2025 Jul;31(7):e70352. doi: 10.1111/gcb.70352.
Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate, litter quality, and microbial communities. Process-based ecosystem models are used to predict responses of litter decomposition to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to integrate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our research used a comprehensive leaf litterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (represented as the copiotroph-to-oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of calibration under climate change using the SSP 3-7.0 climate change scenario. We find that incorporating empirical drivers of litter decomposition provides similar, and sometimes better (in terms of goodness-of-fit metrics), predictions of leaf litter decomposition but with different underlying ecological dynamics. For some sites, calibration also increased climate change-induced leaf litter mass loss by up to 5%, with implications for carbon cycle-climate feedbacks. Our work also provides an example for integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration method to bridge empiricism and process-based modeling, answering a call for the use of empirical microbial community data in process-based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is important for improving confidence in model projections of ecological processes like litter decomposition under climate change.
凋落物分解是一个重要的生态系统过程和全球碳通量,已被证明受气候、凋落物质量和微生物群落控制。基于过程的生态系统模型用于预测凋落物分解对气候变化的响应。虽然这些模型表示了气候和凋落物质量对凋落物分解的影响,但它们尚未将经验性微生物群落数据纳入其参数化中以预测凋落物分解。为了填补这一空白,我们的研究在美国国家生态观测站网络(NEON)的10个温带森林站点进行了一项全面的落叶袋分解实验,以校准(7个站点)和验证(3个站点)微生物-矿物碳稳定(MIMICS)模型。MIMICS被校准为经验分解速率及其经验驱动因素,包括微生物群落(以富养菌与贫养菌的比例表示)。我们校准经验驱动因素,而不是仅校准速率或库大小,以改善模拟落叶分解的潜在驱动因素。然后,我们验证了校准后的模型,并使用SSP 3-7.0气候变化情景评估了气候变化下校准的影响。我们发现,纳入凋落物分解的经验驱动因素可以提供类似的,有时甚至更好(就拟合优度指标而言)的落叶分解预测,但具有不同的潜在生态动态。对于一些站点,校准还使气候变化导致的落叶质量损失增加了高达5%,这对碳循环-气候反馈有影响。我们的工作还提供了一个示例,说明如何使用一种新颖的校准方法将细菌功能群相对丰度的数据整合到生态系统模型中,以弥合经验主义和基于过程建模之间差距,回应了在基于过程的生态系统模型中使用经验性微生物群落数据的呼吁。我们强调,如本研究中所做的那样,将机制信息纳入模型对于提高对气候变化下凋落物分解等生态过程模型预测的信心很重要。