Wang Wei, Liu Jie, Zhu Shilong, Wang Chaoqun, Li Yang, Leng Xuefei
State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
ACS Appl Mater Interfaces. 2025 Jul 30;17(30):43645-43654. doi: 10.1021/acsami.5c09120. Epub 2025 Jul 17.
In the pursuit of green and sustainable development, there is an urgent demand for environmentally friendly adhesives that maintain a stable adhesion under harsh conditions. In this work, bioinspired by the synergistic mechanisms of mussel proteins, we designed a readily accessible and environmentally friendly catechol-functionalized cross-linking adhesive (MPCs) via molecular engineering and thiol-ene click chemistry. By optimizing solvent selection, we preserved a higher density of phenolic hydroxyl groups, significantly enhancing the interfacial adhesion. The resulting adhesive reaches remarkable lap shear strengths of 2.13 MPa in 63 °C water and 1.75 MPa in liquid nitrogen (-196 °C), surpassing most reported catechol-based adhesives. Notably, MPCs exhibit excellent recyclability through thermal reprocessing, retaining strong adhesion even after 10 reuse cycles. Mechanical testing reveals a tensile strength of up to 48 MPa, while the inherent π-π interactions between benzene rings confer photoluminescence under UV irradiation. This property enables fluorescence-based damage detection, as localized mechanical damage causes measurable intensity shifts. Furthermore, MPCs could degrade controllably through ester-linkage hydrolysis in the cross-linker, generating products with excellent biocompatibility. This work not only advances the design of bioinspired adhesives but also provides a sustainable solution for marine-environment and extreme-environment applications.
在追求绿色和可持续发展的过程中,迫切需要在苛刻条件下保持稳定粘附力的环保型粘合剂。在这项工作中,受贻贝蛋白协同机制的启发,我们通过分子工程和硫醇-烯点击化学设计了一种易于制备且环保的邻苯二酚功能化交联粘合剂(MPCs)。通过优化溶剂选择,我们保留了更高密度的酚羟基,显著增强了界面粘附力。所得粘合剂在63°C水中的搭接剪切强度达到2.13 MPa,在液氮(-196°C)中达到1.75 MPa,超过了大多数已报道的基于邻苯二酚的粘合剂。值得注意的是,MPCs通过热加工表现出优异的可回收性,即使经过10次重复使用循环仍保持强粘附力。力学测试显示拉伸强度高达48 MPa,而苯环之间固有的π-π相互作用在紫外光照射下赋予其光致发光特性。这一特性使得基于荧光的损伤检测成为可能,因为局部机械损伤会导致可测量的强度变化。此外,MPCs可以通过交联剂中的酯键水解可控降解,生成具有优异生物相容性的产物。这项工作不仅推动了仿生粘合剂的设计,还为海洋环境和极端环境应用提供了可持续的解决方案。