Guo Li, Rosignoli Serena, Rasmussen Magnus Wohlfahrt, Suresh Kiran, Sangiorgi Giuseppe, Camerlengo Francesco, Zeisler-Diehl Viktoria V, Schreiber Lukas, Dockter Christoph, Pauly Markus, Tuberosa Roberto, Hochholdinger Frank, Salvi Silvio
Institute of Crop Science and Resource Conservation, Department of Crop Functional Genomics, University of Bonn, Bonn 53117, Germany.
Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy.
Plant Physiol. 2025 Jul 3;198(3). doi: 10.1093/plphys/kiaf311.
The plant cell wall is a crucial structure that ensures plant cell integrity and facilitates environmental adaptation. Cellulose is the primary component of the plant cell wall. Its biosynthesis is orchestrated through the plasma membrane-localized multiprotein cellulose synthase complex, which includes a membrane-anchored endo-1,4-ß-glucanase. Here, we identified a barley (Hordeum vulgare) mutant with short roots resulting from repressed cell division and elongation, which we designated H. vulgare endo-β-1,4-D-glucanase 3-1 (hvglu3-1). HvGLU3 encodes a putative membrane-anchored endo-1,4-ß-glucanase that is highly conserved across plant species. The hvglu3-1 mutant exhibited a 60% reduction in cellulose content, accompanied by changes in hemicellulose and suberin levels and an altered lignin structure in the roots. Subcellular localization analyses and bimolecular fluorescence complementation assays suggested a direct interaction between HvGLU3 and primary cellulose synthases. We investigated the reprogramming of the tissue-specific transcriptome in hvglu3-1 root tips using a combination of laser capture microdissection and RNA sequencing. This approach revealed that 74% of all genes that are actively expressed in the elongation zone are influenced by root cellulose biosynthesis. Gene coexpression analyses highlighted the essential role of cellulose biosynthesis in diverse biological processes, including cell wall organization, phytohormone signaling, and stress responses, to regulate root tissue development. Overall, our study demonstrates the partially conserved role of HvGLU3 in controlling cellulose biosynthesis in roots and provides valuable transcriptomic resources for future studies.
植物细胞壁是确保植物细胞完整性并促进环境适应的关键结构。纤维素是植物细胞壁的主要成分。其生物合成由位于质膜上的多蛋白纤维素合酶复合体协调进行,该复合体包括一种膜锚定的内切-1,4-β-葡聚糖酶。在此,我们鉴定出一个大麦(Hordeum vulgare)突变体,其根短是由于细胞分裂和伸长受到抑制,我们将其命名为H. vulgare内切-β-1,4-D-葡聚糖酶3-1(hvglu3-1)。HvGLU3编码一种推定的膜锚定内切-1,4-β-葡聚糖酶,在植物物种中高度保守。hvglu3-1突变体的纤维素含量降低了60%,同时根中半纤维素和木栓质水平发生变化,木质素结构改变。亚细胞定位分析和双分子荧光互补分析表明HvGLU3与初级纤维素合酶之间存在直接相互作用。我们使用激光捕获显微切割和RNA测序相结合的方法,研究了hvglu3-1根尖中组织特异性转录组的重编程。该方法揭示,在伸长区活跃表达的所有基因中,74%受根纤维素生物合成的影响。基因共表达分析突出了纤维素生物合成在包括细胞壁组织、植物激素信号传导和应激反应等多种生物学过程中对调节根组织发育的重要作用。总体而言,我们的研究证明了HvGLU3在控制根中纤维素生物合成方面的部分保守作用,并为未来研究提供了有价值的转录组资源。