Dogra Priyanka, Kriwacki Richard W
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, USA.
Biochim Biophys Acta Gen Subj. 2025 Sep;1869(10):130835. doi: 10.1016/j.bbagen.2025.130835. Epub 2025 Jul 16.
The nucleolus, the largest membraneless organelle in the nucleus, functions as the site for ribosome biogenesis. While long known for its complex and dynamic structure, our mechanistic understanding of nucleolar organization has advanced dramatically in the past 15 years. The process of phase separation (PS) facilitates the compartmentalization of ribosomal components with assembly factors in the nucleolus, underlying complex ribosome biogenesis processes. Multicomponent PS creates multiple nucleolar sub-compartments that function from inside out as a ribosome assembly line. In this review, we discuss the molecular basis of nucleolar organization, including how different types of protein-protein and protein-RNA interactions create the multilayered architecture that enables ribosome biogenesis. Key proteins including nucleolin, fibrillarin, and nucleophosmin mediate nucleolar compartmentalization through their unique structural features and multivalent interactions. The processes of ribosomal RNA (rRNA) transcription, modification and splicing, and folding are spatially and temporally segregated within different regions of the nucleolus. rRNA matures and changes form along this processing continuum, continually altering its interactions with proteins, creating multiple separate liquid phases that establish sub-compartments. We highlight how both folded domains and intrinsically disordered regions (IDRs) in nucleolar proteins contribute to multivalent interactions underlying PS and nucleolar compartmentalization. We also discuss how perturbation of nucleolar PS alters nucleolar structure, dynamics, and function and contributes to a range of pathological conditions.
核仁是细胞核中最大的无膜细胞器,作为核糖体生物发生的场所发挥作用。虽然长期以来人们都知道它具有复杂且动态的结构,但在过去15年里,我们对核仁组织的机制理解有了显著进展。相分离(PS)过程促进了核糖体成分与组装因子在核仁中的区室化,这是复杂核糖体生物发生过程的基础。多组分PS形成了多个核仁亚区室,这些亚区室从内到外作为一条核糖体装配线发挥作用。在这篇综述中,我们讨论了核仁组织的分子基础,包括不同类型的蛋白质-蛋白质和蛋白质-RNA相互作用如何创造出能够实现核糖体生物发生的多层结构。包括核仁素、纤维蛋白原和核磷蛋白在内的关键蛋白质通过其独特的结构特征和多价相互作用介导核仁区室化。核糖体RNA(rRNA)的转录、修饰和剪接以及折叠过程在核仁的不同区域在空间和时间上是分开的。rRNA沿着这个加工连续体成熟并改变形式,不断改变其与蛋白质的相互作用,形成多个独立的液相,从而建立亚区室。我们强调了核仁蛋白中的折叠结构域和内在无序区域(IDR)如何促成PS和核仁区室化背后的多价相互作用。我们还讨论了核仁PS的扰动如何改变核仁结构、动态和功能,并导致一系列病理状况。