Gordy James T, Zheng Jean J, Maxwell Amanda R, Bates Rowan E, Taylor Alannah D, Karanika Styliani, Ton Heemee, Meza Jacob, Li Yangchen, Zhang Jiaqi, Karakousis Petros C, Markham Richard B
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
Vaccine. 2025 Jul 16;62:127517. doi: 10.1016/j.vaccine.2025.127517.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is the leading cause of mortality due to a single infectious organism. While generally curable, TB requires a lengthy and complex antibiotic regimen, due in large part to persistent bacteria that survive antibiotic exposure. Rel is the primary enzyme regulating the stringent response, which contributes to Mtb persistence. Targeting Rel with a vaccine to eliminate persistent bacteria in combination with antibiotics to kill dividing bacteria has shown promise in model systems. In a mouse model of Mtb infection, a vaccine created by genetically fusing rel to the chemokine macrophage inflammatory protein 3α (MIP3α), a ligand for the CC chemokine receptor type 6 (CCR6) present on immature dendritic cells, has been shown to enhance T-cell responses and accelerate eradication of infection in mouse models compared to a vaccine lacking the chemokine component. In this study, immunogenicity studies in the mouse and rhesus macaque models provide evidence that intranasal administrations of the DNA form of the MipRel vaccine led to enhanced lung infiltration of T cells after a series of immunizations. Furthermore, despite similar systemic T-cell responses following MipRel or Rel vaccination, lung and bronchoalveolar lavage cell samples were more enriched for cytokine-secreting T cells in MipRel groups compared to Rel groups. We conclude that intranasal immunization with a simple MIP-3α fusion DNA vaccine represents a novel strategy for eliciting T-cell immune responses to antigens of interest within the respiratory tract. That this formulation is immunogenic in a non-human primate model historically viewed as poorly responsive to DNA vaccines indicates the potential for clinical application in the treatment of Mtb infection, with possible applications to other respiratory pathogens.
结核分枝杆菌(Mtb)是结核病(TB)的病原体,是单一传染性生物体导致死亡的主要原因。虽然结核病通常可以治愈,但由于大部分抗生素治疗后仍有存活的持续性细菌,所以需要漫长而复杂的抗生素治疗方案。Rel是调节严谨反应的主要酶,严谨反应促使结核分枝杆菌持续存在。在模型系统中,用疫苗靶向Rel以消除持续性细菌,并结合抗生素杀死正在分裂的细菌已显示出前景。在结核分枝杆菌感染的小鼠模型中,通过将rel基因与趋化因子巨噬细胞炎性蛋白3α(MIP3α)基因融合构建的疫苗已显示,与缺乏趋化因子成分的疫苗相比,能增强T细胞反应并加速小鼠模型中感染的清除,MIP3α是未成熟树突状细胞上存在的CC趋化因子受体6(CCR6)的配体。在本研究中,在小鼠和恒河猴模型中的免疫原性研究提供了证据,表明经一系列免疫后,鼻内给予MipRel疫苗的DNA形式可导致T细胞在肺部的浸润增强。此外,尽管MipRel或Rel疫苗接种后全身T细胞反应相似,但与Rel组相比,MipRel组的肺和支气管肺泡灌洗细胞样本中分泌细胞因子的T细胞更为富集。我们得出结论,用简单的MIP - 3α融合DNA疫苗进行鼻内免疫是一种引发呼吸道内针对感兴趣抗原的T细胞免疫反应的新策略。这种制剂在历史上被认为对DNA疫苗反应不佳的非人灵长类动物模型中具有免疫原性,这表明其在治疗结核分枝杆菌感染方面具有临床应用潜力,也可能应用于其他呼吸道病原体。