Zeng Yanling, Wang Fengqiujie, Lin Liu, Wang Xichang, Tao Ningping
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, PR China.
Int J Biol Macromol. 2025 Aug;320(Pt 3):146042. doi: 10.1016/j.ijbiomac.2025.146042. Epub 2025 Jul 15.
Zein nanoparticles (ZNPs) were prepared via the pH-cycling method and combined with cationic chitosan oligosaccharide (COS), neutral gum arabic (GA), and anionic sodium alginate (SA), forming composite nanoparticles (C-ZNPs, G-ZNPs, S-ZNPs). Polysaccharide complexation enhances ZNPs' hydrophilicity and interfacial adsorption through hydrogen bonding and electrostatic interactions, significantly improving the stability of high internal phase Pickering emulsions (HIPPEs).The charge properties of polysaccharides further influenced the emulsifying behavior: cationic/neutral polysaccharides improved particle dispersibility and wettability, while anionic SA significantly increased surface charge density (absolute zeta potential >45 mV), and electrostatic repulsion, enhancing droplet stability (droplet size <1000 nm) and interfacial adsorption efficiency. At high oil phases (φ ≥ 0.75), all nanoparticle-stabilized PEs exhibited gel-like structures; however, emulsions stabilized by S-ZNPs formed the most compact and elastic interfacial films, demonstrating superior resistance to coalescence during thermal treatment, freeze-thaw cycles, centrifugation (85 % phase retention), and long-term storage (30 d without phase separation). Confocal microscopy and rheological analyses confirmed that the combination of SA's rigid molecular backbone and strong electrostatic affinity with zein enabled the construction of dense, self-healing interfacial networks. This study elucidates the charge-regulated interfacial assembly of polysaccharide-zein nanoparticles, providing insights for designing stable HIPPEs for food delivery, 3D printing, and functional ingredient encapsulation.
通过pH循环法制备了玉米醇溶蛋白纳米颗粒(ZNPs),并将其与阳离子壳寡糖(COS)、中性阿拉伯胶(GA)和阴离子海藻酸钠(SA)相结合,形成复合纳米颗粒(C-ZNPs、G-ZNPs、S-ZNPs)。多糖络合通过氢键和静电相互作用增强了ZNPs的亲水性和界面吸附,显著提高了高内相比皮克林乳液(HIPPEs)的稳定性。多糖的电荷性质进一步影响了乳化行为:阳离子/中性多糖改善了颗粒的分散性和润湿性,而阴离子SA显著增加了表面电荷密度(绝对zeta电位>45 mV)和静电排斥力,提高了液滴稳定性(液滴尺寸<1000 nm)和界面吸附效率。在高油相(φ≥0.75)下,所有纳米颗粒稳定的乳液均呈现凝胶状结构;然而,由S-ZNPs稳定的乳液形成了最致密且有弹性的界面膜,在热处理、冻融循环、离心(相保留率85%)和长期储存(30天无相分离)过程中表现出卓越的抗聚结性能。共聚焦显微镜和流变学分析证实,SA刚性分子主链与玉米醇溶蛋白的强静电亲和力相结合,能够构建致密、自愈合的界面网络。本研究阐明了多糖-玉米醇溶蛋白纳米颗粒的电荷调节界面组装,为设计用于食品递送、3D打印和功能成分封装的稳定HIPPEs提供了见解。