Suppr超能文献

综合治理下人工智能对绿色经济效率的影响

The impact of artificial intelligence on green economy efficiency under integrated governance.

作者信息

Song Zhichun, Deng Yao

机构信息

Institute for Chengdu-Chongqing Economic Zone Development, Chongqing Technology and Business University, Chongqing, China.

Pass College of Chongqing Technology and Business University, Chongqing, China.

出版信息

Sci Rep. 2025 Jul 17;15(1):25919. doi: 10.1038/s41598-025-03817-8.

Abstract

This study investigates the impact of Artificial Intelligence (AI) on Green Economic Efficiency (GEE) using panel data from 30 Chinese provinces spanning from 2011 to 2020. The empirical results demonstrate that AI significantly enhances GEE, with its effects varying across regions and governance types. Specifically, AI's impact is stronger in economically advanced and technologically intensive provinces. In terms of policy governance, excessive Market-based Environmental Regulations (MER) diminish AI's effect on GEE, while stronger Administrative-command Environmental Regulations (CER) and Informal Environmental Regulations (IER) amplify it. Technological governance, particularly Substantive Green Technological Innovations (SUG), reduces AI's effectiveness due to high investment thresholds, whereas Symbolic Green Technological Innovations (SYG) increase AI's impact on GEE. In legal governance, both Administrative Intellectual Property Protection (AIP) and Judicial Intellectual Property Protection (JIP) can reduce AI's marginal effect, with AIP showing a stronger threshold effect. These findings empirically support the theoretical models of AI-driven green development, highlighting the varying roles of governance mechanisms in promoting GEE and offering actionable insights for policymakers to optimize governance frameworks for sustainable growth.

摘要

本研究利用2011年至2020年中国30个省份的面板数据,调查了人工智能(AI)对绿色经济效率(GEE)的影响。实证结果表明,人工智能显著提高了绿色经济效率,其影响因地区和治理类型而异。具体而言,人工智能在经济发达和技术密集型省份的影响更强。在政策治理方面,过度的基于市场的环境规制(MER)会削弱人工智能对绿色经济效率的影响,而更强有力的行政命令式环境规制(CER)和非正式环境规制(IER)则会增强这种影响。技术治理方面,特别是实质性绿色技术创新(SUG),由于投资门槛高,会降低人工智能的有效性,而象征性绿色技术创新(SYG)则会增强人工智能对绿色经济效率的影响。在法律治理方面,行政知识产权保护(AIP)和司法知识产权保护(JIP)都可以降低人工智能的边际效应,其中行政知识产权保护的阈值效应更强。这些发现从实证上支持了人工智能驱动的绿色发展理论模型,突出了治理机制在促进绿色经济效率方面的不同作用,并为政策制定者优化可持续增长的治理框架提供了可操作的见解。

相似文献

本文引用的文献

6
Recent applications of AI to environmental disciplines: A review.人工智能在环境学科中的最新应用:综述。
Sci Total Environ. 2024 Jan 1;906:167705. doi: 10.1016/j.scitotenv.2023.167705. Epub 2023 Oct 12.
10
Industrial co-agglomeration, green technological innovation, and total factor energy efficiency.产业集聚协同、绿色技术创新与全要素能源效率
Environ Sci Pollut Res Int. 2022 Sep;29(41):62475-62494. doi: 10.1007/s11356-022-20078-4. Epub 2022 Apr 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验