Wang Zihan, Hui Fengming, Cheng Xiao
School of Geospatial Engineering and Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
Key Laboratory of Comprehensive Observation of Polar Environment (Sun Yat-sen University), Ministry of Education, Zhuhai, 519082, China.
Sci Data. 2025 Jul 17;12(1):1255. doi: 10.1038/s41597-025-05582-9.
Arctic rivers deliver 11% of the global river discharge volume into the Arctic Ocean, influencing ocean circulation, sea ice, and coastal ecosystems. Our understanding of these patterns is limited by substantial data gaps. To address this, we present the Reconstructed Arctic-draining river DIscharge and Temperature (RADIT) dataset, a comprehensive record of reconstructed daily discharge, temperature, and heat flux for 25 major Arctic rivers from 1950 to 2023. Based on machine learning regression methods and ERA5-Land reanalysis data, we designed distinct reconstruction frameworks for discharge and temperature, considering the different characteristics of the observational data. We achieved high reconstruction accuracy, with median Nash-Sutcliffe efficiency (NSE) values of 0.861 for discharge and 0.906 for temperature. The RADIT dataset, with extensive spatial and temporal coverage, is a valuable resource for understanding Arctic hydrology and its response to climate change. It will improve Arctic freshwater budget quantification, climate model calibrations, and assessments of river impacts on the Arctic Ocean, enhancing our understanding of the role of the Arctic Ocean in the global climate system.
北极河流向北冰洋输送的水量占全球河流总径流量的11%,对海洋环流、海冰和沿海生态系统产生影响。我们对这些模式的理解因大量的数据缺口而受到限制。为了解决这一问题,我们展示了重建的北极排水河流流量与温度(RADIT)数据集,这是一份关于1950年至2023年25条主要北极河流每日重建流量、温度和热通量的综合记录。基于机器学习回归方法和ERA5-Land再分析数据,我们考虑到观测数据的不同特征,为流量和温度设计了不同的重建框架。我们实现了较高的重建精度,流量的中位数纳什-萨特克利夫效率(NSE)值为0.861,温度的中位数纳什-萨特克利夫效率(NSE)值为0.906。RADIT数据集具有广泛的时空覆盖范围,是了解北极水文及其对气候变化响应的宝贵资源。它将改善北极淡水收支量化、气候模型校准以及对河流对北冰洋影响的评估,增强我们对北冰洋在全球气候系统中作用的理解。