Blázquez-Sánchez Mario, Guerrero-López Alejandro, Candela Ana, Belenguer-Llorens Albert, Moreno José Miguel, Sevilla-Salcedo Carlos, Sánchez-Cueto María, Arroyo Manuel J, Gutiérrez-Pareja Mark, Gómez-Verdejo Vanessa, Olmos Pablo M, Mancera Luis, Muñoz Patricia, Marín Mercedes, Alcalá Luis, Rodríguez-Temporal David, Rodríguez-Sánchez Belén
Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Dr. Esquerdo, 46, 28007, Madrid, Spain.
Institute of Health Research Gregorio Marañón, IISGM, Dr. Esquerdo, 46, 28007, Madrid, Spain.
BMC Bioinformatics. 2025 Jul 17;26(1):181. doi: 10.1186/s12859-025-06200-6.
Clostridioides difficile is a major cause of hospital-acquired diarrhea and a driver of nosocomial outbreaks, yet rapid, accurate ribotype identification remains challenging. We sought to develop a MALDI-TOF MS-based workflow coupled with machine learning to distinguish epidemic toxigenic ribotypes (RT027 and RT181) from other strains in real time.
We analyzed MALDI-TOF spectra from 379 clinical isolates collected across ten Spanish hospitals and identified seven discriminant biomarker peaks. Two peaks (2463 and 4993 m/z) were uniquely associated with RT027, while combinations of five additional peaks reliably identified RT181. Our classifiers-implemented both in the commercial Clover MSDAS platform and the open-access AutoCdiff web tool-achieved up to 100% balanced accuracy in ribotype assignment and proved robust in real-time outbreak simulations.
This study demonstrates that MALDI-TOF MS combined with tailored machine learning can deliver rapid, high-precision ribotype identification for C. difficile. The freely available AutoCdiff models ( https://bacteria.id ) offer an immediately deployable solution for clinical laboratories, with the potential to enhance outbreak surveillance and control.
艰难梭菌是医院获得性腹泻的主要病因,也是医院感染暴发的一个驱动因素,但快速、准确的核糖体分型鉴定仍然具有挑战性。我们试图开发一种基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)的工作流程,并结合机器学习,以实时区分流行的产毒核糖体分型(RT027和RT181)与其他菌株。
我们分析了从西班牙十家医院收集的379株临床分离株的MALDI-TOF光谱,确定了七个具有鉴别意义的生物标志物峰。两个峰(质荷比为2463和4993)与RT027独特相关,而另外五个峰的组合可可靠地鉴定RT181。我们在商业的Clover MSDAS平台和开放获取的AutoCdiff网络工具中实施的分类器在核糖体分型分配中实现了高达100%的平衡准确率,并在实时暴发模拟中证明了其稳健性。
本研究表明,MALDI-TOF MS结合定制的机器学习可为艰难梭菌提供快速、高精度的核糖体分型鉴定。免费提供的AutoCdiff模型(https://bacteria.id)为临床实验室提供了一种可立即部署的解决方案,有可能加强暴发监测和控制。