Li Su, Wang Qinghua, Su Chen, Jia Zhen, Shen Guoshuang, Da Mengting, Yang Rui, Zhao Jiuda, Chen Daozhen
Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, PR China.
Department of Obstetrics and Gynecology, Haidong No. 2 People's Hospital, Haidong, 810699, PR China.
Mater Today Bio. 2025 Jun 27;33:102030. doi: 10.1016/j.mtbio.2025.102030. eCollection 2025 Aug.
Emerging nanodrug delivery strategies seek to overcome tumor heterogeneity and enhance drug penetration in the dense matrix of solid tumors. This study presents a dual-responsive nanoplatform, poly(lactic-co-glycolic acid)-disulfide-polyethylene glycol-glutamate (PLGA-SS-PEG-Glu) loaded with Gambogic acid (GA), engineered to exploit γ-glutamyltranspeptidase (GGT) and glutathione (GSH) triggers specific to the triple-negative breast cancer (TNBC) microenvironment. Designed with Boc-L-Glutamic Acid-1-tert-butyl ester (Boc-Glu-OtBu), this nanoplatform achieves enzyme-triggered charge reversal to enhance tumor penetration, facilitating GGT-induced charge-switching and GSH-responsive GA release. In vitro, PLGA-SS-PEG-Glu@GA shows potent cytotoxicity (IC = 0.80 μg/ml) against 4T1 TNBC cells, inducing apoptosis and inhibiting cell proliferation through energy-dependent, GGT-mediated endocytosis. Compensatory Nrf2/HO-1 activation mechanistically induced by GA-loaded nanoplatform ultimately potentiated mitochondrial apoptotic pathway (Bcl-2/caspase-3) initiation, promoting apoptosis. In vivo, this nanoplatform leveraged its tumor-specific enzymatic and redox microenvironment-responsive properties to achieve enhanced deep intratumoral penetration. Treatment for 2 weeks effectively suppressed primary tumor growth, while extended therapy to one month significantly inhibited the formation of pulmonary metastatic foci. This dual-responsive strategy not only elevates drug bioavailability at the tumor site but also provides a promising solution to overcome critical barriers in solid tumor drug delivery.
新兴的纳米药物递送策略旨在克服肿瘤异质性,并增强药物在实体瘤致密基质中的渗透。本研究提出了一种双响应纳米平台,即负载藤黄酸(GA)的聚乳酸-乙醇酸共聚物-二硫键-聚乙二醇-谷氨酸(PLGA-SS-PEG-Glu),其设计目的是利用三阴性乳腺癌(TNBC)微环境特有的γ-谷氨酰转肽酶(GGT)和谷胱甘肽(GSH)触发因素。该纳米平台采用Boc-L-谷氨酸-1-叔丁酯(Boc-Glu-OtBu)设计,实现酶触发的电荷反转以增强肿瘤渗透,促进GGT诱导的电荷转换和GSH响应性GA释放。在体外,PLGA-SS-PEG-Glu@GA对4T1 TNBC细胞显示出强大的细胞毒性(IC = 0.80 μg/ml),通过能量依赖性、GGT介导的内吞作用诱导细胞凋亡并抑制细胞增殖。由负载GA的纳米平台机械诱导的补偿性Nrf2/HO-1激活最终增强了线粒体凋亡途径(Bcl-2/半胱天冬酶-3)的启动,促进细胞凋亡。在体内,该纳米平台利用其肿瘤特异性酶和氧化还原微环境响应特性实现了增强的肿瘤内深部渗透。治疗2周有效抑制了原发性肿瘤生长,而延长治疗至1个月则显著抑制了肺转移灶的形成。这种双响应策略不仅提高了肿瘤部位的药物生物利用度,还为克服实体瘤药物递送中的关键障碍提供了一个有前景的解决方案。