文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习增强了对大脑活动图谱的解读,以发现脑部疾病的治疗方法。

Deep learning enhanced deciphering of brain activity maps for discovery of therapeutics for brain disorders.

作者信息

Zhang Xianrui, Liu Zhen, Luo Xuan, Cao Yi, Zhang Wencong, Li Honglin, Li Wei, Cheng Shuk Han, Haggarty Stephen J, Wang Xin, Shi Peng

机构信息

Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.

Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.

出版信息

iScience. 2025 Jun 10;28(7):112868. doi: 10.1016/j.isci.2025.112868. eCollection 2025 Jul 18.


DOI:10.1016/j.isci.2025.112868
PMID:40678509
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12268937/
Abstract

This study presents an artificial intelligence enhanced screening platform, DeepBAM, which enables deep learning of large-scale whole brain activity maps (BAMs) from living, drug-responsive larval zebrafish for neuropharmacological prediction. Automated microfluidics and high-speed microscopy are utilized to achieve high-throughput phenotypic screening for generating the BAM library. Deep learning is applied to deconvolve the pharmacological information from the BAM library and to predict the therapeutical potential of non-clinical compounds without any prior information about the chemicals. For a validation set composed of blinded clinical neuro-drugs, several potent anti-Parkinson's disease and anti-epileptic drugs are predicted with nearly 45% accuracy. The prediction capability of DeepBAM is further tested with a set of nonclinical compounds, revealing the pharmaceutical potential in 80% of the anti-epileptic and 36% of the anti-Parkinson predictions. These data support the notion of systems-level phenotyping in combination with machine learning to aid therapeutics discovery for brain disorders.

摘要

本研究提出了一种人工智能增强的筛选平台DeepBAM,它能够从活体、对药物有反应的斑马鱼幼体中深度学习大规模全脑活动图谱(BAM),用于神经药理学预测。利用自动化微流体技术和高速显微镜实现高通量表型筛选,以生成BAM库。应用深度学习从BAM库中反卷积药理学信息,并在没有任何关于化学物质的先验信息的情况下预测非临床化合物的治疗潜力。对于由盲法临床神经药物组成的验证集,预测了几种有效的抗帕金森病和抗癫痫药物,准确率接近45%。用一组非临床化合物进一步测试了DeepBAM的预测能力,揭示了80%的抗癫痫药物和36%的抗帕金森病预测中的药物潜力。这些数据支持了系统水平表型分析与机器学习相结合以辅助脑部疾病治疗发现的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/c515a2625f5c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/67211f0435a3/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/753a4a77cc62/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/4f0a5949faa6/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/40f63b5ecc2c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/0188585fde32/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/600752a48afa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/91f55a74bffb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/eceef9cf8daa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/c515a2625f5c/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/67211f0435a3/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/753a4a77cc62/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/4f0a5949faa6/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/40f63b5ecc2c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/0188585fde32/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/600752a48afa/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/91f55a74bffb/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/eceef9cf8daa/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f51a/12268937/c515a2625f5c/gr8.jpg

相似文献

[1]
Deep learning enhanced deciphering of brain activity maps for discovery of therapeutics for brain disorders.

iScience. 2025-6-10

[2]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[3]
Short-Term Memory Impairment

2025-1

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[9]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[10]
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.

Health Technol Assess. 2024-8

本文引用的文献

[1]
Few-shot meta-learning applied to whole brain activity maps improves systems neuropharmacology and drug discovery.

iScience. 2024-9-3

[2]
Vertebrates on a Chip: Noninvasive Electrical and Optical Mapping of Whole Brain Activity Associated with Pharmacological Treatments.

ACS Chem Neurosci. 2024-6-5

[3]
DeepAEG: a model for predicting cancer drug response based on data enhancement and edge-collaborative update strategies.

BMC Bioinformatics. 2024-3-9

[4]
Imaging whole-brain activity to understand behavior.

Nat Rev Phys. 2022-5

[5]
Worm Generator: A System for High-Throughput Screening.

Nano Lett. 2023-2-22

[6]
Zebrafish Larvae Behavior Models as a Tool for Drug Screenings and Pre-Clinical Trials: A Review.

Int J Mol Sci. 2022-6-14

[7]
DualGCN: a dual graph convolutional network model to predict cancer drug response.

BMC Bioinformatics. 2022-4-15

[8]
Fish Capsules: A System for High-Throughput Screening of Combinatorial Drugs.

Adv Sci (Weinh). 2022-3

[9]
Anticonvulsant activity of melatonin and its success in ameliorating epileptic comorbidity-like symptoms in zebrafish.

Eur J Pharmacol. 2021-12-5

[10]
Promising tacrine/huperzine A-based dimeric acetylcholinesterase inhibitors for neurodegenerative disorders: From relieving symptoms to modifying diseases through multitarget.

J Neurochem. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索