Zhang Xianrui, Liu Zhen, Luo Xuan, Cao Yi, Zhang Wencong, Li Honglin, Li Wei, Cheng Shuk Han, Haggarty Stephen J, Wang Xin, Shi Peng
Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
iScience. 2025 Jun 10;28(7):112868. doi: 10.1016/j.isci.2025.112868. eCollection 2025 Jul 18.
This study presents an artificial intelligence enhanced screening platform, DeepBAM, which enables deep learning of large-scale whole brain activity maps (BAMs) from living, drug-responsive larval zebrafish for neuropharmacological prediction. Automated microfluidics and high-speed microscopy are utilized to achieve high-throughput phenotypic screening for generating the BAM library. Deep learning is applied to deconvolve the pharmacological information from the BAM library and to predict the therapeutical potential of non-clinical compounds without any prior information about the chemicals. For a validation set composed of blinded clinical neuro-drugs, several potent anti-Parkinson's disease and anti-epileptic drugs are predicted with nearly 45% accuracy. The prediction capability of DeepBAM is further tested with a set of nonclinical compounds, revealing the pharmaceutical potential in 80% of the anti-epileptic and 36% of the anti-Parkinson predictions. These data support the notion of systems-level phenotyping in combination with machine learning to aid therapeutics discovery for brain disorders.
本研究提出了一种人工智能增强的筛选平台DeepBAM,它能够从活体、对药物有反应的斑马鱼幼体中深度学习大规模全脑活动图谱(BAM),用于神经药理学预测。利用自动化微流体技术和高速显微镜实现高通量表型筛选,以生成BAM库。应用深度学习从BAM库中反卷积药理学信息,并在没有任何关于化学物质的先验信息的情况下预测非临床化合物的治疗潜力。对于由盲法临床神经药物组成的验证集,预测了几种有效的抗帕金森病和抗癫痫药物,准确率接近45%。用一组非临床化合物进一步测试了DeepBAM的预测能力,揭示了80%的抗癫痫药物和36%的抗帕金森病预测中的药物潜力。这些数据支持了系统水平表型分析与机器学习相结合以辅助脑部疾病治疗发现的观点。
2025-1
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
Nat Rev Phys. 2022-5
Nano Lett. 2023-2-22
BMC Bioinformatics. 2022-4-15
Adv Sci (Weinh). 2022-3