Wang Qunhao, Huang Jing, Qi Luhe, Li Mei, Wang Sijun, Chen Junqing, Sui Zengyan, Bi Tingting, Tang Qicai, Yu Le, Hu Pei, Zhang Wei, Lu Canhui, Chen Chaoji
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China.
National Key Laboratory of Advanced Polymer Materials, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China.
ACS Nano. 2025 Jul 29;19(29):26770-26781. doi: 10.1021/acsnano.5c06914. Epub 2025 Jul 18.
Hydrogel electrolytes are regarded as a promising option for high-performance aqueous zinc-ion batteries (ZIBs), but they frequently fail to balance the reaction kinetics and Zn deposition stability. Inspired by articular cartilage, here we develop a gradient-networked hydrogel electrolyte comprising poly(vinyl alcohol) (PVA), cellulose nanofiber (CNF), and graphene oxide (GO) for ZIBs. The low-network-density PVA/CNF (PC) hydrogel layer (cathode side) with extensive channels and a higher water content ensures the rapid transport of ions, while the interfacial hydrogel layer in contact with the Zn anode exhibits a high-density PVA/CNF/GO (PCG) network with enriched carboxyl and hydroxyl groups, which facilitates the desolvation of Zn, decreases the activity of water, and homogenizes the Zn flux. Moreover, the polar oxygen-containing groups in GO endow it with dielectric and electronegative properties, collectively enhancing the Zn transference numbers and ionic conductivity of the hydrogel electrolyte. Benefiting from such a gradient-networked structure and modulated interfacial chemistry, the hydrogel electrolyte can effectively stabilize Zn anodes while simultaneously accelerating reaction kinetics. Consequently, the hydrogel electrolyte enables Zn-symmetric cells to exhibit excellent stability over a duration exceeding 2200 h at 1 mA cm, and Zn-MnO full cells demonstrate enhanced rate capability and safety under various external damages. Overall, this work provides a reliable nature-inspired design strategy of hydrogel electrolytes toward high-performing ZIBs.
水凝胶电解质被认为是高性能水系锌离子电池(ZIBs)的一个有前景的选择,但它们常常难以平衡反应动力学和锌沉积稳定性。受关节软骨的启发,我们在此开发了一种用于ZIBs的梯度网络水凝胶电解质,其由聚乙烯醇(PVA)、纤维素纳米纤维(CNF)和氧化石墨烯(GO)组成。具有大量通道和较高含水量的低网络密度PVA/CNF(PC)水凝胶层(阴极侧)确保了离子的快速传输,而与锌阳极接触的界面水凝胶层呈现出具有丰富羧基和羟基的高密度PVA/CNF/GO(PCG)网络,这有利于锌的去溶剂化,降低水的活性,并使锌通量均匀化。此外,GO中的极性含氧基团赋予其介电和电负性,共同提高了水凝胶电解质的锌迁移数和离子电导率。受益于这种梯度网络结构和调控的界面化学,水凝胶电解质能够有效地稳定锌阳极,同时加速反应动力学。因此,该水凝胶电解质使锌对称电池在1 mA cm下超过2200小时的持续时间内表现出优异的稳定性,并且锌-二氧化锰全电池在各种外部损伤下展现出增强的倍率性能和安全性。总体而言,这项工作为高性能ZIBs的水凝胶电解质提供了一种可靠的受自然启发的设计策略。