Suppr超能文献

HfO/Ti阻变存储器中的电铸动力学:成分与热工程背后的机制

Electroforming Kinetics in HfO/Ti RRAM: Mechanisms behind Compositional and Thermal Engineering.

作者信息

Kaniselvan Manasa, Portner Kevin, Falcone Donato Francesco, Bragaglia Valeria, Clarysse Jente, Bégon-Lours Laura, Mladenović Marko, Offrein Bert J, Luisier Mathieu

机构信息

Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zürich, CH-8092 Zürich, Switzerland.

IBM Research Europe - Zurich, 8803 Rüschlikon, Switzerland.

出版信息

ACS Nano. 2025 Aug 5;19(30):27455-27466. doi: 10.1021/acsnano.5c05850. Epub 2025 Jul 18.

Abstract

A critical issue affecting filamentary resistive random access memory (RRAM) cells is the requirement of high voltages during electroforming. Reducing the magnitude of these voltages is of significant interest, as it ensures compatibility with complementary metal-oxide-semiconductor (CMOS) technologies. Previous studies have identified that changing the initial stoichiometry of the switching layer and/or implementing thermal engineering approaches has an influence on the electroforming voltage magnitude, but the exact mechanisms remain unclear. Here, we develop an understanding of how these mechanisms work within a standard a-HfO/Ti RRAM stack through combining atomistic driven kinetic Monte Carlo (d-KMC) simulations with experimental data. By performing device-scale simulations at atomistic resolution, we can precisely model the movements of point defects under applied biases in structurally inhomogeneous materials, which allows us to not only capture finite-size effects but also understand how conductive filaments grow under different electroforming conditions. Doing atomistic simulations at the device level also enables us to link simulations of the mechanisms behind conductive filament formation with trends in experimental data for the same material stack. We identify a transition from primarily vertical to lateral ion movement dominating the filamentary growth process in substoichiometric oxides and differentiate the influence of global and local heating on the morphology of the formed filaments. These different filamentary structures have implications for the dynamic range exhibited by formed devices in subsequent SET/RESET operations. Overall, our results unify the complex ion dynamics in technologically relevant HfO/Ti-based stacks and provide guidelines that can be leveraged when fabricating devices.

摘要

影响丝状电阻式随机存取存储器(RRAM)单元的一个关键问题是在电形成过程中需要高电压。降低这些电压的幅度具有重大意义,因为这确保了与互补金属氧化物半导体(CMOS)技术的兼容性。先前的研究已经确定,改变开关层的初始化学计量和/或采用热工程方法会对电形成电压幅度产生影响,但确切机制仍不清楚。在这里,我们通过将原子驱动的动力学蒙特卡罗(d-KMC)模拟与实验数据相结合,来理解这些机制在标准a-HfO/Ti RRAM堆栈中的工作方式。通过在原子分辨率下进行器件级模拟,我们可以精确地模拟结构不均匀材料在施加偏压下点缺陷的运动,这不仅使我们能够捕捉有限尺寸效应,还能理解导电细丝在不同电形成条件下是如何生长的。在器件层面进行原子模拟还使我们能够将导电细丝形成背后的机制模拟与同一材料堆栈的实验数据趋势联系起来。我们确定了在亚化学计量氧化物中,丝状生长过程从主要由垂直离子运动主导转变为主要由横向离子运动主导,并区分了全局加热和局部加热对所形成细丝形态的影响。这些不同的丝状结构对所形成器件在后续的设置/重置操作中表现出的动态范围有影响。总体而言,我们的结果统一了技术相关的HfO/Ti基堆栈中复杂的离子动力学,并提供了在制造器件时可以利用的指导方针。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验