Wu Wentao, Zhu Jingjing, Wu Yuzhu, Li Daning, Liu Rong, Zheng Yuchen, Deng Qiuqiong, Yuan Yiqiang
Henan Provincial Chest Hospital (Chest Hospital of Zhengzhou University), Zhengzhou, 450000, China.
The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Discov Oncol. 2025 Jul 18;16(1):1369. doi: 10.1007/s12672-025-03212-9.
Uveal melanoma (UM) is a highly malignant intraocular tumor with a higher incidence in white populations. This study aims to develop a nomogram model to predict the 3-year, 5-year, and 8-year overall survival (OS) of UM patients. The model is based on data from the SEER database and incorporates independent prognostic factors such as gender, age, marital status, AJCC stage, surgery, and radiotherapy, aiming to improve the accuracy of survival predictions and support individualized treatment strategies.
This study analyzed data from 1,036 white UM patients in the SEER database from 2004 to 2015. Significant prognostic factors were identified using multivariate Cox regression analysis and incorporated into the nomogram model. The model's performance was evaluated using the C-index, net reclassification improvement (NRI), decision curve analysis (DCA), and calibration curves, and was internally validated in both the training and validation cohorts.
The nomogram model demonstrated strong predictive power, with C-index values of 0.714 and 0.728 in the training and validation cohorts, respectively, outperforming the traditional AJCC staging system. Calibration curves showed high concordance between the model's predictions and actual survival rates. NRI and DCA analyses indicated that this model offers superior clinical utility in survival prediction.
This study provides a nomogram specifically for predicting survival in white UM patients, significantly improving the accuracy of 3-year, 5-year, and 8-year survival predictions compared to the traditional AJCC staging system. This model may serve as a valuable clinical tool to guide individualized treatment planning, improve prognosis management, and enhance the quality of clinical decision-making.
葡萄膜黑色素瘤(UM)是一种高度恶性的眼内肿瘤,在白种人群中发病率较高。本研究旨在开发一种列线图模型,以预测UM患者的3年、5年和8年总生存率(OS)。该模型基于监测、流行病学和最终结果(SEER)数据库的数据,并纳入了性别、年龄、婚姻状况、美国癌症联合委员会(AJCC)分期、手术和放疗等独立预后因素,旨在提高生存预测的准确性并支持个体化治疗策略。
本研究分析了2004年至2015年SEER数据库中1036例白种UM患者的数据。使用多变量Cox回归分析确定显著的预后因素,并将其纳入列线图模型。使用C指数、净重新分类改善(NRI)、决策曲线分析(DCA)和校准曲线评估模型的性能,并在训练队列和验证队列中进行内部验证。
列线图模型显示出强大的预测能力,训练队列和验证队列中的C指数值分别为0.714和0.728,优于传统的AJCC分期系统。校准曲线显示模型预测与实际生存率之间具有高度一致性。NRI和DCA分析表明,该模型在生存预测方面具有卓越的临床实用性。
本研究提供了一种专门用于预测白种UM患者生存情况的列线图,与传统的AJCC分期系统相比,显著提高了3年、5年和8年生存预测的准确性。该模型可能作为一种有价值的临床工具,以指导个体化治疗计划、改善预后管理并提高临床决策质量。