Tankink Thijs, Houdijk Han, Tabucol Johnnidel, Leopaldi Marco, Hijmans Juha M, Carloni Raffaella
IEEE Trans Neural Syst Rehabil Eng. 2025;33:2823-2833. doi: 10.1109/TNSRE.2025.3590581.
Improper tuning of prosthetic foot properties to the individual user limits the efficacy of current state-of-the-art prosthetic feet in terms of walking economy. This study aims to explore the potential of human-in-the-loop optimization to individually optimize prosthetic foot stiffness and alignment to decrease the metabolic cost of walking of transtibial amputees. 10 transtibial amputees underwent an optimization protocol while walking on a treadmill with an experimental prosthetic foot with tuneable stiffness and alignment. We aimed to minimize the metabolic cost of walking by optimizing the stiffness and alignment of the prosthetic foot, using an evolutionary optimization algorithm. The metabolic cost of walking during the post-test using optimal settings was compared with the pre-test using standard settings, and the post-test using standard settings. Human-in-the-loop optimization of the tuneable prosthetic foot resulted in optimal stiffness ( $4.41\pm ~0.17$ Nm/±) and alignment ( $2.40\pm ~0.97^{\circ }\text {)}$ settings that differ between participants. Walking on the prosthetic foot with optimized settings during the post-test resulted in a significant reduction in metabolic cost compared to the pre-test with standard settings (-10.6%). The metabolic cost during the post-test with standard settings was in between the pre-test with standard settings (-6.6%) and the post-test with optimal settings (-4.3%), indicating that part of the decrease in cost could be explained by motor adaptation of the user. Human-in-the-loop optimization can individually tune the stiffness and alignment of a prosthetic foot to lower the metabolic cost of walking for transtibial amputees and provides different optimal settings for each individual participant. Both optimization of prosthetic components and motor adaptation of the user contributed to the reduction in metabolic cost, which corroborates that human-in-the-loop optimization could enhance the efficacy of prosthetic devices.
将假肢足部特性与个体用户不匹配,限制了当前最先进的假肢足部在步行经济性方面的功效。本研究旨在探索人在回路优化的潜力,以针对个体优化假肢足部的刚度和对线,从而降低胫骨截肢者的步行代谢成本。10名胫骨截肢者在跑步机上使用具有可调刚度和对线的实验性假肢足部行走时,接受了优化方案。我们旨在通过使用进化优化算法来优化假肢足部的刚度和对线,从而将步行代谢成本降至最低。将使用最佳设置进行测试后的步行代谢成本与使用标准设置进行测试前以及使用标准设置进行测试后的成本进行比较。对可调假肢足部进行人在回路优化,得出了参与者之间不同的最佳刚度($4.41 \pm 0.17$ Nm/°)和对线($2.40 \pm 0.97^{\circ}$)设置。与使用标准设置进行测试前相比,在测试后使用优化设置的假肢足部行走,代谢成本显著降低(-10.6%)。使用标准设置进行测试后的代谢成本介于使用标准设置进行测试前(-6.6%)和使用最佳设置进行测试后(-4.3%)之间,这表明成本降低的部分原因可以用用户的运动适应性来解释。人在回路优化可以针对个体调整假肢足部的刚度和对线,以降低胫骨截肢者的步行代谢成本,并为每个个体参与者提供不同的最佳设置。假肢组件的优化和用户的运动适应性都有助于降低代谢成本,这证实了人在回路优化可以提高假肢装置的功效。