Wang Fangqing, Feng Liu, Zhang Mingwei, Cong Hailin
School of Materials Science and Engineering, Shandong University of Technology, Zibo, PR China.
Analytical and Testing Center, Shandong University of Technology, Zibo, PR China.
Nat Commun. 2025 Jul 18;16(1):6624. doi: 10.1038/s41467-025-61766-2.
The lattice oxygen oxidation mechanism typically requires the removal of electrons from the metal-oxygen band, which may cause structural instability due to a decrease in the metal-oxygen bond order. To address this challenge, we introduce low-valence, non-catalytically active Na to construct oxygen non-bonding bands on high-entropy hydroxides, allowing electrons to be removed from the oxygen non-bonding band rather than the metal-oxygen bonds, thereby improving the stability of the catalyst. Na doped high-entropy layered double hydroxide (Na-HE LDH) with a low overpotential of 176 mV@10 mA cm⁻² under alkaline conditions. Furthermore, the Pt/C | |Na-HE LDH electrode pair operates continuously for 2000 h at ~500 mA cm⁻² in an anion-exchange membrane electrolyzer (30 wt% KOH, 60 °C). In-situ spectroscopic and density functional theory calculations identify that the introduction of Na facilitates the formation of oxygen non-bonding band thereby mitigating structural instability. This study offers a strategy for designing efficient and stable lattice oxygen catalysts and provides valuable insights for developing catalysts capable of withstanding the rigorous demands of industrial hydrogen production environments.
晶格氧氧化机制通常需要从金属 - 氧能带中移除电子,这可能会由于金属 - 氧键级的降低而导致结构不稳定。为应对这一挑战,我们引入低价、无催化活性的钠,在高熵氢氧化物上构建氧非键能带,使电子从氧非键能带而非金属 - 氧键中移除,从而提高催化剂的稳定性。钠掺杂的高熵层状双氢氧化物(Na-HE LDH)在碱性条件下具有176 mV@10 mA cm⁻²的低过电位。此外,Pt/C||Na-HE LDH电极对在阴离子交换膜电解槽(30 wt% KOH,60°C)中以~500 mA cm⁻²连续运行2000小时。原位光谱和密度泛函理论计算表明,钠的引入促进了氧非键能带的形成,从而减轻了结构不稳定性。本研究为设计高效稳定的晶格氧催化剂提供了一种策略,并为开发能够承受工业制氢环境严格要求的催化剂提供了有价值的见解。