Suppr超能文献

一种基于侧窗滤波器和新型注入增益矩阵的新型全色锐化方法。

A novel pansharpening method based on side window filter and new injection gain matrices.

作者信息

Liu Tianci, Dong Keyan, Song Yansong, Li Jinwang, Wang Junyao, Wang Yanbo, Zhang Lei, Li Yuqing

机构信息

School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, 130022, China.

Institute of Space Photo-Electronic Technology, Changchun University of Science and Technology, Changchun, 130022, Jilin, China.

出版信息

Sci Rep. 2025 Jul 18;15(1):26052. doi: 10.1038/s41598-025-08929-9.

Abstract

The acquisition of remote sensing images with both high spatial resolution and high spectral resolution is constrained by limitations in spectral imaging technology. Pan-sharpening is utilized to generate high-resolution multispectral images that correspond to the resolution of panchromatic (PAN) images through the fusion of multispectral (MS) and PAN images. Traditional methods frequently encounter challenges associated with the loss of image details. This study introduces a novel multispectral image fusion method based on Side Window Filtering (SWF) and a new injected gain, termed the improved adaptive Gram-Schmidt method based on SWF (SWGSA), with an emphasis on detail preservation. Initially, side window filtering is applied to the PAN image, which not only reduces noise but also enhances edge retention, leading to a more accurate computation of weight indices. Subsequently, the injected gain is adjusted by incorporating references from the PAN image to further enhance image details. Ultimately, the fused image is produced through this process. Experimental results from the IKONOS, GeoEye-1, and WorldView-3 datasets substantiate the effectiveness of the proposed method, demonstrating a significant improvement in the quality of the fused images.

摘要

同时获取高空间分辨率和高光谱分辨率的遥感图像受到光谱成像技术局限性的制约。全色锐化用于通过多光谱(MS)图像与全色(PAN)图像的融合来生成与PAN图像分辨率相对应的高分辨率多光谱图像。传统方法经常面临与图像细节丢失相关的挑战。本研究引入了一种基于侧窗滤波(SWF)的新型多光谱图像融合方法以及一种新的注入增益,即基于SWF的改进自适应Gram-Schmidt方法(SWGSA),重点在于细节保留。首先,将侧窗滤波应用于PAN图像,这不仅降低了噪声,还增强了边缘保留,从而实现更准确的权重指数计算。随后,通过纳入PAN图像的参考信息来调整注入增益,以进一步增强图像细节。最终,通过该过程生成融合图像。来自IKONOS、GeoEye-1和WorldView-3数据集的实验结果证实了所提方法的有效性,表明融合图像的质量有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验