Taylor Geospatial Institute, Saint Louis, MO, 63108, USA.
Department of Earth, Environmental and Geospatial Sciences, Saint Louis University, Saint Louis, MO, 63108, USA.
Sci Rep. 2024 Jul 1;14(1):15063. doi: 10.1038/s41598-024-63650-3.
Soybean is an essential crop to fight global food insecurity and is of great economic importance around the world. Along with genetic improvements aimed at boosting yield, soybean seed composition also changed. Since conditions during crop growth and development influences nutrient accumulation in soybean seeds, remote sensing offers a unique opportunity to estimate seed traits from the standing crops. Capturing phenological developments that influence seed composition requires frequent satellite observations at higher spatial and spectral resolutions. This study introduces a novel spectral fusion technique called multiheaded kernel-based spectral fusion (MKSF) that combines the higher spatial resolution of PlanetScope (PS) and spectral bands from Sentinel 2 (S2) satellites. The study also focuses on using the additional spectral bands and different statistical machine learning models to estimate seed traits, e.g., protein, oil, sucrose, starch, ash, fiber, and yield. The MKSF was trained using PS and S2 image pairs from different growth stages and predicted the potential VNIR1 (705 nm), VNIR2 (740 nm), VNIR3 (783 nm), SWIR1 (1610 nm), and SWIR2 (2190 nm) bands from the PS images. Our results indicate that VNIR3 prediction performance was the highest followed by VNIR2, VNIR1, SWIR1, and SWIR2. Among the seed traits, sucrose yielded the highest predictive performance with RFR model. Finally, the feature importance analysis revealed the importance of MKSF-generated vegetation indices from fused images.
大豆是应对全球粮食不安全的重要作物,在全球范围内具有重要的经济意义。随着旨在提高产量的遗传改良,大豆种子的成分也发生了变化。由于作物生长和发育期间的条件会影响大豆种子中的营养物质积累,因此遥感为从立作物中估计种子特性提供了独特的机会。捕捉影响种子成分的物候学发展需要更高空间和光谱分辨率的频繁卫星观测。本研究介绍了一种称为多头核光谱融合(MKSF)的新型光谱融合技术,该技术结合了 PlanetScope(PS)的更高空间分辨率和 Sentinel 2(S2)卫星的光谱波段。该研究还侧重于利用附加的光谱波段和不同的统计机器学习模型来估算种子特性,例如蛋白质、油、蔗糖、淀粉、灰分、纤维和产量。MKSF 使用来自不同生长阶段的 PS 和 S2 图像对进行训练,并预测 PS 图像中的潜在 VNIR1(705nm)、VNIR2(740nm)、VNIR3(783nm)、SWIR1(1610nm)和 SWIR2(2190nm)波段。我们的结果表明,VNIR3 的预测性能最高,其次是 VNIR2、VNIR1、SWIR1 和 SWIR2。在种子特性中,蔗糖的预测性能最高,RFR 模型表现最佳。最后,特征重要性分析揭示了融合图像中 MKSF 生成的植被指数的重要性。