Suppr超能文献

基于系统筛选的多组学生物标志物和临床可及性对妊娠糖尿病进行早期预测——一项多种族孕妇队列的纵向研究

Early prediction of gestational diabetes mellitus based on systematically selected multi-panel biomarkers and clinical accessibility-a longitudinal study of a multi-racial pregnant cohort.

作者信息

Yang Jiaxi, Cao Yaqi, Qian Fang, Grewal Jagteshwar, Sacks David B, Chen Zhen, Tsai Michael Y, Chen Jinbo, Zhang Cuilin

机构信息

Global Center for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

出版信息

BMC Med. 2025 Jul 18;23(1):430. doi: 10.1186/s12916-025-04258-w.

Abstract

BACKGROUND

Early identification of high-risk women is critical for preventing gestational diabetes mellitus (GDM). We aimed to improve early prediction of GDM using multiple panels of cardiometabolic biomarkers assessed in early and mid-pregnancy, considering clinical accessibility.

METHODS

In a US study of 2802 pregnant individuals, we assessed 91 cardiometabolic biomarkers at 10-14 (random blood) and 15-26 (fasting) gestational weeks (GW) in 107 GDM cases and 214 controls. Candidate biomarkers were categorized by clinical accessibility from high to low: group I (clinically accessible tests like HbA1c, lipids), group II (clinically accessible biomarkers upon request like insulin-like growth factor (IGF) axis markers, adipokines), and group III (specialty lab-required targeted metabolomics: amino acids (AAs) and phospholipid fatty acids (FAs)). At each visit, we constructed a full model incorporating all candidate biomarkers and conventional predictors. We built alternative models utilizing different groups of biomarkers considering clinical accessibility. Variable selection was performed to retain variables with a p value < 0.10 for a parsimonious model. Model performance was evaluated by area under receiver operating characteristics curve (AUC), proportion of cases followed (PCF, %) and proportion needed to follow (PNF, %), and decision curve analysis.

RESULTS

A full model comprising conventional predictors, clinical and non-clinical cardiometabolic biomarkers, and metabolomic markers achieved the highest discriminative accuracy (AUC: 0.842 at 10-14 GW, 0.829 at 15-26 GW). The addition of novel biomarkers increased PCF and decreased PNF, suggesting increased clinical utility. For example, at 10-14 GW, 69.5% of GDM cases are expected to be detected from women whose risk is above the 80% percentile estimated by the full model vs. 49.1% by the conventional model. Additionally, 46.1% of women identified as being at the highest risk by the full model are expected to account for 90.0% of GDM cases vs. 71.1% by the conventional model. Decision curve analysis showed that models incorporating novel biomarkers performed better than the conventional model including glucose, and the full model at 10-14 GW had the highest net benefit, overall.

CONCLUSIONS

This study suggested that a selected panel of cardiometabolic biomarkers using early-pregnancy random plasma samples predicted GDM comparably to those using mid-pregnancy fasting samples.

摘要

背景

早期识别高危女性对于预防妊娠期糖尿病(GDM)至关重要。我们旨在利用在妊娠早期和中期评估的多组心脏代谢生物标志物,考虑临床可及性,来改善GDM的早期预测。

方法

在美国一项针对2802名孕妇的研究中,我们在107例GDM病例和214名对照的妊娠10 - 14周(随机血样)和15 - 26周(空腹)时评估了91种心脏代谢生物标志物。候选生物标志物根据临床可及性从高到低分类:第一组(临床可及的检测项目,如糖化血红蛋白、血脂),第二组(根据要求临床可及的生物标志物,如胰岛素样生长因子(IGF)轴标志物、脂肪因子),以及第三组(专业实验室所需的靶向代谢组学检测项目:氨基酸(AAs)和磷脂脂肪酸(FAs))。每次就诊时,我们构建了一个纳入所有候选生物标志物和传统预测指标的完整模型。我们根据临床可及性利用不同组的生物标志物构建了替代模型。进行变量选择以保留p值 < 0.10的变量以建立简约模型。通过受试者操作特征曲线下面积(AUC)、随访病例比例(PCF,%)和需要随访比例(PNF,%)以及决策曲线分析来评估模型性能。

结果

一个包含传统预测指标、临床和非临床心脏代谢生物标志物以及代谢组学标志物的完整模型实现了最高的判别准确性(10 - 14周妊娠时AUC为0.842,15 - 26周妊娠时为0.829)。添加新的生物标志物增加了PCF并降低了PNF,表明临床实用性增加。例如,在10 - 14周妊娠时,预计从风险高于完整模型估计的第80百分位数的女性中可检测出69.5%的GDM病例,而传统模型为49.1%。此外预计完整模型确定为最高风险的女性中有46.1%将占GDM病例的90.0%,而传统模型为71.1%。决策曲线分析表明,纳入新生物标志物的模型比包括血糖的传统模型表现更好,总体而言,10 - 14周妊娠时的完整模型具有最高的净效益。

结论

本研究表明,使用妊娠早期随机血浆样本的一组选定的心脏代谢生物标志物预测GDM的效果与使用妊娠中期空腹样本的效果相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e93/12275388/5502fc76384f/12916_2025_4258_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验