Wang Xiaojing, Liu Juan, Zhang Yu, Lin Haifeng, Xing Jun, Wang Lei, Xu Jixiang
Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138474. doi: 10.1016/j.jcis.2025.138474. Epub 2025 Jul 16.
Targeted regulation of metal-atom configurations is an effective strategy to modulate electronic structure and enhance peroxymonosulfate (PMS) activation. In this study, cobalt atom with an asymmetric coordination of five nitrogen atoms and one oxygen atom (Co-N5O1) anchored on oxygen-doped carbon nitride (OCN) surfaces was synthesized to activate PMS. Experimental and computational results revealed that the asymmetric N, O coordination of Co atoms not only facilitated PMS adsorption and activation, thereby generating more sulfate (SO), superoxide radical (O), and singlet oxygen (O) radicals; but also enabled dissolved oxygen to participate in radical generation and promoted the electron transfer from contaminants to the surface-bound PMS complexes. Under the main actions of SO, O, and electron transfer, the Co-N5O1/OCN + PMS system demonstrated remarkable degradation efficiency, achieving nearly 100% degradation for both electron-donating (ciprofloxacin, bisphenol A, sulfamethoxazole, 4-chlorophenol, tetracycline) and electron-withdrawing (p-nitrophenol, p-nitrobenzoic acid, metronidazole) pollutants at a concentration of 10 mg L. In a continuous-flow operation, 90% of ciprofloxacin was removed within 150 min (100 mL solution) with minimal metal leaching (< 0.3 mg L). This study elucidates the critical role of metal atom coordination in PMS activation and offers a promising catalyst for various types of contaminants degradation.
对金属原子构型进行靶向调控是调节电子结构和增强过一硫酸盐(PMS)活化的有效策略。在本研究中,合成了锚定在氧掺杂氮化碳(OCN)表面的具有五个氮原子和一个氧原子不对称配位的钴原子(Co-N5O1)以活化PMS。实验和计算结果表明,钴原子的不对称N、O配位不仅促进了PMS的吸附和活化,从而产生更多的硫酸根(SO)、超氧自由基(O)和单线态氧(O)自由基;还能使溶解氧参与自由基生成,并促进电子从污染物转移到表面结合的PMS配合物。在SO、O和电子转移的主要作用下,Co-N5O1/OCN + PMS体系表现出显著的降解效率,对于浓度为10 mg L的供电子(环丙沙星、双酚A、磺胺甲恶唑、4-氯酚、四环素)和吸电子(对硝基苯酚、对硝基苯甲酸、甲硝唑)污染物,降解率均接近100%。在连续流操作中,150分钟内(100 mL溶液)可去除90%的环丙沙星,且金属浸出量极小(<0.3 mg L)。本研究阐明了金属原子配位在PMS活化中的关键作用,并为各类污染物降解提供了一种有前景的催化剂。