Luo Qi, Hao Xiaoyu, Tang Kewei, Guo Jinglun, Kang Jingyu, Qi Weihong, Liu Xuqing
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
School of Physics and Chemistry, Hunan First Normal University, Changsha, 410000, China.
J Colloid Interface Sci. 2025 Dec 15;700(Pt 2):138430. doi: 10.1016/j.jcis.2025.138430. Epub 2025 Jul 15.
Seawater electrolysis offers a promising strategy for sustainable hydrogen production, yet inherent chloride ions (Cl) in seawater induce electrode corrosion, posing a major challenge to this process. Herein, we developed a novel biomimetic catalyst by doping Cerium Oxide (CeO₂) into a nickel-based system and depositing it on carbon cloth (CeO₂/Ni/CC) inspired by the tentacle architecture of marine anemones. This design endows the catalyst with abundant active sites and high specific surface area, thereby significantly enhancing its seawater electrolysis performance. Notably, the incorporation of CeO₂ effectively inhibit the adsorption of Cl and prevent the corrosion of the electrode. The optimized CeO₂/Ni/CC-2 catalyst exhibits outstanding OER activity and chloride corrosion resistance in both 1.0 M KOH and 0.6 M NaCl +1.0 M KOH electrolytes, achieving overpotentials of 214 mV and 220 mV at 10 mA cm, respectively. Tafel slope analysis and Nyquist impedance measurements further confirm that CeO₂ doping substantially improves reaction kinetics and charge transfer efficiency. Moreover, computational investigations employing density functional theory formalism (DFT) uncover that CeO₂ incorporation induces a blue shift in the d-band center of Ni, which optimizes the adsorption energies of oxygenated intermediates and enhances the adsorption capacity for chloride ions. This study not only introduces a new strategy for designing robust catalysts for seawater electrolysis but also lays a theoretical foundation for advancing clean energy technologies.
海水电解为可持续制氢提供了一种有前景的策略,然而海水中固有的氯离子(Cl)会导致电极腐蚀,给这一过程带来重大挑战。在此,我们受海葵触手结构的启发,通过将氧化铈(CeO₂)掺杂到镍基体系中并将其沉积在碳布上(CeO₂/Ni/CC),开发了一种新型仿生催化剂。这种设计赋予催化剂丰富的活性位点和高比表面积,从而显著提高其海水电解性能。值得注意的是,CeO₂的掺入有效抑制了Cl的吸附并防止电极腐蚀。优化后的CeO₂/Ni/CC - 2催化剂在1.0 M KOH和0.6 M NaCl + 1.0 M KOH电解质中均表现出出色的析氧反应(OER)活性和抗氯化物腐蚀性,在10 mA cm⁻²时的过电位分别为214 mV和220 mV。塔菲尔斜率分析和奈奎斯特阻抗测量进一步证实,CeO₂掺杂显著改善了反应动力学和电荷转移效率。此外,采用密度泛函理论形式(DFT)的计算研究发现,CeO₂的掺入导致Ni的d带中心发生蓝移,这优化了含氧中间体的吸附能并增强了对氯离子的吸附能力。这项研究不仅为设计用于海水电解的稳健催化剂引入了新策略,也为推进清洁能源技术奠定了理论基础。