Pattanashetti Laxmi, Donagannavar Manoj M, Jigalur Divya, Patil Vishal S
Department of Pharmacology, KLE College of Pharmacy, Hubli, KLE Academy of Higher Education and Research, Deemed-to-be-University, Belagavi, Karnataka, India.
Department of Pharmacology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Deemed-to-be-University, Belagavi, Karnataka, India.
Cell Biochem Biophys. 2025 Jul 19. doi: 10.1007/s12013-025-01832-0.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, with limited therapeutic options and adverse effects associated with long-term pharmacological treatments. This study investigated the neuroprotective potential of Bryophyllum pinnatum (B. pinnatum) through integrative in silico and in vivo approaches. Network pharmacology and pathway enrichment analyses (KEGG, Cytoscape 3.10.1) were used to identify compound-target network association. Molecular docking using AutoDock Vina and molecular dynamics (MD) simulations for 200 ns using GROMACS were executed to assess the stability of the key ligands and targets. Cognitive impairment was induced in Wistar rats using scopolamine (1 mg/kg, i.p.). Animals were treated with B. pinnatum hydroalcoholic leaf extract (200 and 400 mg/kg, p.o.) and donepezil (3 mg/kg, i.p.) for 30 days. Cognitive and motor functions were evaluated via Morris water maze, elevated plus maze, locomotor activity, and grip strength tests. Biochemical assays measured acetylcholinesterase (ACHE) activity, β-amyloid (Aβ) levels, glutathione, and lipid peroxidation. Histopathological analysis of brain tissue assessed neuronal integrity. In silico analyses identified multiple phytoconstituents involved in AD-relevant pathways, including MAPK, PI3K-Akt, and cholinergic signaling. Diosmin exhibited high binding affinities to ACHE (-10.3 kcal/mol) and MAO-B (-11.2 kcal/mol), with stable binding confirmed via MD simulations. In vivo, B. pinnatum significantly improved cognitive performance, motor coordination, and antioxidant status while reducing Aβ aggregation and ACHE activity (p < 0.05). Histological findings showed reduced neuronal degeneration and neuroinflammation. These results highlight the multitarget neuroprotective potential of B. pinnatum, with diosmin emerging as a promising plant-derived candidate for AD therapeutics.
阿尔茨海默病(AD)是一种以认知衰退为特征的进行性神经退行性疾病,治疗选择有限,且长期药物治疗存在不良反应。本研究通过综合的计算机模拟和体内实验方法,研究了落地生根(Bryophyllum pinnatum)的神经保护潜力。利用网络药理学和通路富集分析(KEGG,Cytoscape 3.10.1)来确定化合物-靶点网络关联。使用AutoDock Vina进行分子对接,并使用GROMACS进行200纳秒的分子动力学(MD)模拟,以评估关键配体和靶点的稳定性。使用东莨菪碱(1毫克/千克,腹腔注射)诱导Wistar大鼠认知障碍。动物用落地生根水醇叶提取物(200和400毫克/千克,口服)和多奈哌齐(3毫克/千克,腹腔注射)治疗30天。通过莫里斯水迷宫、高架十字迷宫、运动活动和握力测试评估认知和运动功能。生化分析测量乙酰胆碱酯酶(ACHE)活性、β-淀粉样蛋白(Aβ)水平、谷胱甘肽和脂质过氧化。脑组织的组织病理学分析评估神经元完整性。计算机模拟分析确定了参与AD相关通路的多种植物成分,包括丝裂原活化蛋白激酶(MAPK)、磷脂酰肌醇-3-激酶-蛋白激酶B(PI3K-Akt)和胆碱能信号通路。地奥司明对ACHE(-10.3千卡/摩尔)和单胺氧化酶B(MAO-B,-11.2千卡/摩尔)表现出高结合亲和力,通过MD模拟证实了其稳定结合。在体内,落地生根显著改善了认知表现、运动协调和抗氧化状态,同时减少了Aβ聚集和ACHE活性(p<0.05)。组织学结果显示神经元变性和神经炎症减少。这些结果突出了落地生根的多靶点神经保护潜力,地奥司明成为一种有前景的植物源AD治疗候选药物。