Martínez-Francés Evangelina, Morán Verónica, Romero Ana M, Cabello-García J Pablo, Viñals Alberto, Burguete Javier, Rivera Sergio, Rodríguez Rafael, Méndez Roberto, Domingo Carles, Martí-Climent Josep M
Medical Physics and Radiation Protection Department, Clínica Universidad de Navarra, Madrid, Spain.
Medical Physics and Radiation Protection Department, Clínica Universidad de Navarra, Madrid, Spain.
Phys Med. 2025 Aug;136:105044. doi: 10.1016/j.ejmp.2025.105044. Epub 2025 Jul 19.
This study evaluates ambient and personal neutron detectors in a synchrotron-based proton therapy facility, using experimental data and Monte Carlo (TOPAS) simulations. It aims to assess the interchangeability of detectors, characterize neutron doses in the treatment room, and provide radiological protection recommendations.
A 10 × 10 × 10 cm volume (energy range: 121-173 MeV) was irradiated on a 30 × 30 × 60 cm solid water phantom. Ambient dose equivalent (H*(10)) was measured using two extended-energy-range detectors (LUPIN-II, WENDI-II) at 20 positions. Personal dose equivalent (H(10)) was evaluated using five dosimeters (bubble detectors, DOPEN tracks, NeutrakT, MCP6/MCP7 TLDs, NRF51 EPD) at 14-20 positions. Bland-Altman analysis quantified agreement. TOPAS, a Monte Carlo code, was employed to calculate neutron spectra and to compare the results with experimental H*(10) values for its validation.
The WENDI-II and LUPIN-II detectors showed good agreement, with WENDI-II readings 14 % higher on average. Among personal dosimeters, DOPEN tracks exhibited the closest agreement with bubble detectors, with a bias of -33 %. In constrast, NeutrakT underperformed due to its high detection limit. TOPAS simulations aligned with experimental H*(10) trends, with differences ranging from 0 to 32 %, except for positions involving significant PMMA attenuation. Neutron spectra revealed angular and distance-dependent variations, with thermal neutrons dominating at larger distances.
Both WENDI-II and LUPIN-II are suitable for environmental neutron monitoring in synchrotron-based facilities. DOPEN tracks emerged as the most reliable passive personal dosimeter for H(10). Monte Carlo simulations enhanced understanding of neutron field behavior and were validated, in terms of H*(10), by the experimental results. Recommendations for radiological protection include replicating accidental exposures with WENDI-II and LUPIN-II to estimate doses accurately.
本研究利用实验数据和蒙特卡罗(TOPAS)模拟,对基于同步加速器的质子治疗设施中的环境中子探测器和个人中子探测器进行评估。其目的是评估探测器的互换性,表征治疗室内的中子剂量,并提供放射防护建议。
在一个30×30×60厘米的固体水模体上,对一个10×10×10厘米的体积(能量范围:121 - 173兆电子伏)进行照射。使用两个扩展能量范围探测器(LUPIN-II、WENDI-II)在20个位置测量环境剂量当量(H*(10))。使用五个剂量计(气泡探测器、DOPEN径迹、NeutrakT、MCP6/MCP7热释光剂量计、NRF51电子个人剂量计)在14 - 20个位置评估个人剂量当量(H(10))。采用布兰德 - 奥特曼分析来量化一致性。使用蒙特卡罗代码TOPAS计算中子能谱,并将结果与实验H*(10)值进行比较以进行验证。
WENDI-II和LUPIN-II探测器显示出良好的一致性,WENDI-II的读数平均高14%。在个人剂量计中