Cholsaktrakool Pornsawan, Kawang Kornthara, Sangpiromapichai Nicha, Thongsuk Pannaporn, Anuntakarun Songtham, Kunadirek Pattapon, Chuaypen Natthaya, Nilgate Sumanee, Kueakulpattana Naris, Rirerm Ubolrat, Chatsuwan Tanittha, Jauneikaite Elita, Davies Frances, Pratanwanich Ploy N, Sriswasdi Sira, Nilaratanakul Voraphoj
Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand.
Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
iScience. 2025 Jun 20;28(8):112962. doi: 10.1016/j.isci.2025.112962. eCollection 2025 Aug 15.
This study focuses on the rapid detection of antimicrobial resistance (AMR) in . The "Align-Search-Infer" pipeline aligned query sequences from 24 urine samples against a curated genome database of 40 isolates, searched for the best matches, and inferred their antimicrobial susceptibility. Carbapenem resistance inference achieved 77.3% accuracy (95%CI: 59.8-94.8%) within 10 min using whole-genome matching, and 85.7% accuracy (95%CI: 70.7-100.0%) within 1 h using plasmid matching - both surpassing the 54.2% accuracy (95%CI: 34.2-74.1%) of AMR gene detection at 6 h. The proposed method requires less bacterial DNA and is suitable for low-load clinical samples. Our small local database performed comparably to large public databases. This study supports the integration of pathogen-specific genome databases into clinical workflows to enable rapid and accurate antimicrobial susceptibility prediction. Further research is needed to validate and refine the method using larger genomic-phenotypic datasets across diverse pathogens and sample types.
本研究聚焦于尿液中抗菌药物耐药性(AMR)的快速检测。“比对-搜索-推断”流程将来自24份尿液样本的查询序列与40株菌株的精心整理的基因组数据库进行比对,搜索最佳匹配项,并推断其抗菌药物敏感性。使用全基因组匹配在10分钟内碳青霉烯耐药性推断准确率达到77.3%(95%置信区间:59.8 - 94.8%),使用质粒匹配在1小时内准确率达到85.7%(95%置信区间:70.7 - 100.0%)——两者均超过了6小时时AMR基因检测54.2%的准确率(95%置信区间:34.2 - 74.1%)。所提出的方法所需细菌DNA较少,适用于低载量临床样本。我们的小型本地数据库与大型公共数据库表现相当。本研究支持将病原体特异性基因组数据库整合到临床工作流程中,以实现快速准确的抗菌药物敏感性预测。需要进一步开展研究,使用涵盖多种病原体和样本类型的更大的基因组-表型数据集来验证和完善该方法。