Roman Azcona Maria Silvia, Monaco Gianni, Whitehead Melissa, Kaufmann Masako Monika, Alzubi Jamal, Cathomen Toni, Mussolino Claudio
Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany.
Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, 79106 Freiburg, Germany.
Mol Ther Nucleic Acids. 2025 Jul 1;36(3):102618. doi: 10.1016/j.omtn.2025.102618. eCollection 2025 Sep 9.
Engineered T cells equipped with a chimeric antigen receptor (CAR) have shown tremendous clinical success, but tumor-mediated stimulation of T cell inhibitory receptors leads to exhaustion, hampering durable remission in patients. Mitigation of this effect via checkpoint inhibition or genome editing to knockout the genes encoding for these receptors has shown promise. Yet, the side effects of these procedures require better alternatives. Targeted epigenome editing offers a potent strategy to alter gene expression without DNA modifications. Its hit-and-run mechanism enables durable, multiplexed modulation of gene expression with greater safety. Here, we describe multiplexed epigenome editing inactivation of two critical-exhaustion-related genes, and , both in primary human T cells and in prostate-cancer-specific CAR T cells. Epigenetically modified CAR T cells are indistinguishable from parental cells across a range of functional assays. Although the model does not fully mimic T cell exhaustion, limiting functional assessment, gene silencing remains durable across multiple divisions and repeated CAR stimulations. Furthermore, transcriptomic analysis revealed minimal off-target effects not directly attributable to the effectors used. We demonstrate that targeted epigenome editing is effective and safe for multiplexed gene inhibition and holds potential in engineering CAR T cells with enhanced and customizable features.
配备嵌合抗原受体(CAR)的工程化T细胞已显示出巨大的临床成功,但肿瘤介导的T细胞抑制性受体刺激会导致T细胞耗竭,从而阻碍患者实现持久缓解。通过检查点抑制或基因组编辑敲除编码这些受体的基因来减轻这种效应已显示出前景。然而,这些方法的副作用需要更好的替代方案。靶向表观基因组编辑提供了一种在不进行DNA修饰的情况下改变基因表达的有效策略。其打了就跑机制能够以更高的安全性对基因表达进行持久、多重调控。在这里,我们描述了在原代人T细胞和前列腺癌特异性CAR T细胞中对两个与耗竭相关的关键基因进行多重表观基因组编辑失活。在一系列功能检测中,表观遗传修饰的CAR T细胞与亲代细胞没有区别。尽管该模型不能完全模拟T细胞耗竭,限制了功能评估,但基因沉默在多次分裂和重复CAR刺激后仍能持久存在。此外,转录组分析显示非靶向效应极小,且并非直接归因于所使用的效应因子。我们证明,靶向表观基因组编辑对于多重基因抑制是有效且安全的,并且在工程化具有增强和可定制特征的CAR T细胞方面具有潜力。
Mol Ther Nucleic Acids. 2025-7-1
2025-1
Hematology. 2025-12
Arch Ital Urol Androl. 2025-6-30
Int Rev Immunol. 2025-6-19
Balkan Med J. 2025-7-1
Curr Opin HIV AIDS. 2024-7-1
Front Mol Med. 2023-2-17
J Hematol Oncol. 2023-8-18
Nat Rev Clin Oncol. 2023-6
Nat Rev Immunol. 2023-5
Nat Rev Clin Oncol. 2022-12