Zhong Yingfeng, Li Jieqing, Liu Honggao, Wang Yuanzhong
College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
Food Chem X. 2025 Jul 9;29:102770. doi: 10.1016/j.fochx.2025.102770. eCollection 2025 Jul.
Blume () is highly favored in the edible sector owing to its rich nutritional content and distinct flavor. Herein, headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Fourier transform infrared spectroscopy (FTIR) technology were employed to classify the origin of and quantify volatile organic compounds (VOCs). GC-MS revealed that sweet, fruity, and nutty are the key flavor characteristics of , with samples from Zhaotong City, Yunnan Province, exhibiting superior flavor and richness Based on FTIR data, the gray wolf optimizer-support vector machine and residual convolutional neural network achieved 100 % accuracy in traceability, with an F of 1.000. Additionally, the partial least squares regression model successfully quantified the main components 2-Nonenal and 2(3H)-Furanone, dihydro-5-propyl- in , with prediction set residual deviations of 2.6003 and 2.3883, respectively. This approach offers a novel framework for monitoring VOCs quality control in other foods.
Blume()因其丰富的营养成分和独特的风味在食用领域备受青睐。在此,采用顶空固相微萃取气相色谱 - 质谱联用(HS - SPME - GC - MS)和傅里叶变换红外光谱(FTIR)技术对Blume的产地进行分类并定量挥发性有机化合物(VOCs)。气相色谱 - 质谱联用分析表明,甜味、果味和坚果味是Blume的关键风味特征,云南省昭通市的样品风味更佳且更浓郁。基于傅里叶变换红外光谱数据,灰狼优化器支持向量机和残差卷积神经网络在Blume溯源方面准确率达到100%,F值为1.000。此外,偏最小二乘回归模型成功定量了Blume中的主要成分2 - 壬烯醛和二氢 - 5 - 丙基 - 2(3H)-呋喃酮,预测集残差分别为2.6003和2.3883。该方法为监测其他食品中的挥发性有机化合物质量控制提供了一个新的框架。
需注意,原文中“Blume ()”括号处内容缺失,翻译可能会因信息不完整存在一定局限性。