Suppr超能文献

超声强化铃木-宫浦交叉偶联反应高效制备双氟尼酸:实验与理论相结合的研究

Sonication-Enhanced Suzuki-Miyaura Cross-Coupling for Efficient Diflunisal Production: A Combined Experimental and Theoretical Investigation.

作者信息

Wang Shengjun, Wu Zhimin, Li Rong

机构信息

School of Materials and Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, China.

Qinghai Institute of Technology, Xining 810000, China.

出版信息

ACS Omega. 2025 Jul 3;10(27):29605-29614. doi: 10.1021/acsomega.5c03176. eCollection 2025 Jul 15.

Abstract

The palladium-catalyzed Suzuki-Miyaura cross-coupling reaction is a pivotal method for synthesizing industrially important compounds, such as Diflunisal. In this study, we report the use of a ligand-free PdCl catalyst under ultrasonic irradiation to enhance the synthesis of Diflunisal. A systematic investigation is conducted to elucidate the impact of key operating parameters on the reaction efficiency. Our findings demonstrate that ultrasound-assisted, ligand-free PdCl-catalyzed Suzuki-Miyaura cross-coupling reactions can significantly intensify the synthesis process, providing a more efficient and sustainable route for Diflunisal production. Furthermore, this work delves into the reaction mechanism of the Suzuki-Miyaura process within a ,-dimethylformamide (DMF) solvent system, leveraging density functional theory (DFT) calculations. The results indicate that the oxidative addition of 5-bromosalicylic acid to PdCl, involving cleavage of the Br-C bond, is the rate-determining step of the reaction. Additionally, we analyze the role of the inorganic base, revealing its critical function in reducing the activation barriers of the transmetalation step, thereby facilitating the overall reaction progress.

摘要

钯催化的铃木-宫浦交叉偶联反应是合成工业上重要化合物(如双氟尼酸)的关键方法。在本研究中,我们报道了在超声辐照下使用无配体的PdCl催化剂来增强双氟尼酸的合成。进行了系统研究以阐明关键操作参数对反应效率的影响。我们的研究结果表明,超声辅助的、无配体的PdCl催化的铃木-宫浦交叉偶联反应可显著强化合成过程,为双氟尼酸生产提供了更高效且可持续的路线。此外,这项工作利用密度泛函理论(DFT)计算深入研究了在N,N-二甲基甲酰胺(DMF)溶剂体系中铃木-宫浦反应的机理。结果表明,5-溴水杨酸与PdCl的氧化加成,涉及Br-C键的断裂,是反应的速率决定步骤。此外,我们分析了无机碱的作用,揭示了其在降低转金属化步骤的活化能垒方面的关键功能,从而促进了整个反应进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9981/12268437/d53c9244f89b/ao5c03176_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验