Yang Xiliang, Shin Dong Hoon, Watanabe Kenji, Taniguchi Takashi, Steeneken Peter G, Caneva Sabina
Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea.
Nanophotonics. 2025 Jun 5;14(14):2419-2430. doi: 10.1515/nanoph-2024-0625. eCollection 2025 Jul.
Crystal defects in hexagonal boron nitride (hBN) are emerging as versatile nanoscale optical probes with a wide application profile, spanning the fields of nanophotonics, biosensing, bioimaging, and quantum information processing. However, generating these crystal defects as reliable optical emitters remains challenging due to the need for deterministic defect placement and precise control of the emission area. Here, we demonstrate an approach that integrates microspheres with hBN crystal lattices to enhance both hBN defect generation and optical signal readout. This technique harnesses microspheres to amplify light-matter interactions at the nanoscale through two mechanisms: focused femtosecond (fs) laser irradiation into a photonic nanojet (PNJ) for highly localized defect generation and enhanced light collection via the whispering gallery mode (WGM) effect. Our microsphere-assisted defect generation method reduces the emission area by a factor of 5 and increases the fluorescence collection efficiency by approximately 10 times compared to microsphere-free samples. These advancements in defect generation precision and signal collection efficiency open new possibilities for optical emitter manipulation in hBN, with potential applications in quantum technologies and nanoscale sensing.
六方氮化硼(hBN)中的晶体缺陷正成为具有广泛应用前景的多功能纳米级光学探针,涵盖纳米光子学、生物传感、生物成像和量子信息处理等领域。然而,由于需要确定性的缺陷定位和对发射区域的精确控制,将这些晶体缺陷生成可靠的光学发射器仍然具有挑战性。在这里,我们展示了一种将微球与hBN晶格集成的方法,以增强hBN缺陷的生成和光学信号读出。该技术利用微球通过两种机制在纳米尺度上放大光与物质的相互作用:将飞秒(fs)激光聚焦照射到光子纳米射流(PNJ)中以产生高度局部化的缺陷,并通过回音壁模式(WGM)效应增强光收集。与无微球样品相比,我们的微球辅助缺陷生成方法将发射面积缩小了5倍,并将荧光收集效率提高了约10倍。缺陷生成精度和信号收集效率的这些进步为hBN中的光学发射器操纵开辟了新的可能性,在量子技术和纳米级传感中具有潜在应用。