Lin Chiao-Chih, Wan Shih-Cheng, Shen Cheng-Hui, Liao Zheng-Lin, Liu Yen, Wu Zong Yu, Wu Sheng-Chan, Lin Chia-Kai, Kung Chung-Wei, Hsu Hsu-Cheng, Chou Yu-Hsun
Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 701, Taiwan.
Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan.
Nanophotonics. 2025 Jun 18;14(14):2397-2409. doi: 10.1515/nanoph-2025-0059. eCollection 2025 Jul.
CsPbBr perovskite quantum dots (QDs) are renowned for their exceptional optical properties, including high quantum efficiency, strong exciton binding energy, and tunable emission wavelengths. However, their practical application is hindered by their inherent susceptibility to environmental degradation. In this study, we introduce a CsPbBr@UiO-66 composite material, where CsPbBr QDs self-assemble within the microporous framework of UiO-66, a robust metal-organic framework (MOF). This encapsulation strategy significantly enhances the environmental stability of CsPbBr QDs, maintaining luminescence for over 30 months under ambient conditions and several hours underwater. Temperature-dependent and time resolved photoluminescence (TRPL) measurements further revealed the exciton-phonon interaction within the CsPbBr@UiO-66 material. We distributed CsPbBr@UiO-66 into a hybrid microcavity (MC) and observed strong exciton-polariton coupling, showcasing the remarkable light-matter interaction capabilities of the composite. These findings highlight the potential of CsPbBr@UiO-66 as a robust platform for advanced polaritonic applications, paving the way for next-generation optoelectronic devices and quantum technologies.
CsPbBr钙钛矿量子点(QDs)以其卓越的光学特性而闻名,包括高量子效率、强激子结合能和可调谐发射波长。然而,其实际应用受到其对环境降解固有敏感性的阻碍。在本研究中,我们引入了一种CsPbBr@UiO-66复合材料,其中CsPbBr量子点在UiO-66(一种坚固的金属有机框架(MOF))的微孔框架内自组装。这种封装策略显著提高了CsPbBr量子点的环境稳定性,在环境条件下保持发光超过30个月,在水下保持发光数小时。温度相关和时间分辨光致发光(TRPL)测量进一步揭示了CsPbBr@UiO-66材料内的激子-声子相互作用。我们将CsPbBr@UiO-66分布到一个混合微腔(MC)中,并观察到强激子-极化激元耦合,展示了该复合材料卓越的光-物质相互作用能力。这些发现突出了CsPbBr@UiO-66作为先进极化激元应用强大平台的潜力,为下一代光电器件和量子技术铺平了道路。