Bobermin Larissa Daniele, Bezerra Caio César Ramalho, Krebs-Rosa Júlia, Da Silva Vanessa-Fernanda, Schmitz Izaviany, de Souza Almeida Rômulo Rodrigo, Weber Fernanda Becker, Zasso Nikoli, Longoni Aline, de Assis Adriano Martimbianco, Gonçalves Carlos-Alberto, Souza Diogo Onofre, Quincozes-Santos André
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Neurochem Res. 2025 Jul 21;50(4):240. doi: 10.1007/s11064-025-04498-5.
Glucose is a critical energy substrate for brain function; therefore, hypoglycemia or compromised glucose metabolism can lead to cognitive impairment and an increased risk for neurodegenerative and neuropsychiatric disorders. Astrocytes are glial cells that act as key regulators of brain glucose metabolism, thus representing important cellular targets for neuroprotection during glucose deprivation. Guanosine, a guanine-based purine, has shown neuroprotective properties in various central nervous system (CNS) disorders. As such, this study aimed to evaluate the potential glioprotective effects of guanosine in a glucose deprivation model, using C6 astroglial cells and focusing on redox imbalance, inflammatory and trophic responses, as well as putative signaling mechanisms associated with these effects. C6 astroglial cells were cultured under normal glucose conditions and subjected to glucose deprivation (culture medium without glucose), with or without guanosine (100 µM) for 12 h. Cytokine levels, oxidative stress markers, mitochondrial function, and NFκB, Nrf2/HO-1, and PI3K/Akt signaling were assessed via ELISA, RT-PCR, colorimetric and fluorescence assays. Glucose deprivation induced glial dysfunction, particularly changes in inflammatory response, redox homeostasis, and cytoprotective/survival signaling pathways. Guanosine prevented glucose deprivation-induced NFκB activation, reducing inflammatory markers (e.g., TNF-α, IL-1β) and restoring S100B secretion. Guanosine also upregulated Nrf2/HO-1 expression, improved antioxidant enzyme activities, mitigated oxidative stress, and preserved mitochondrial membrane potential. Additionally, guanosine restored PI3K/Akt expression and modulated glial-derived factors, including GDNF and TGF-β. By modulating the NFκB, Nrf2/HO-1, and PI3K/Akt pathways, guanosine offers a promising glioprotective strategy to mitigate astrocytic damage during hypoglycemia, potentially reducing CNS injury and associated neurodegeneration.
葡萄糖是大脑功能的关键能量底物;因此,低血糖或葡萄糖代谢受损会导致认知障碍,并增加神经退行性疾病和神经精神疾病的风险。星形胶质细胞是一种胶质细胞,是大脑葡萄糖代谢的关键调节因子,因此是葡萄糖剥夺期间神经保护的重要细胞靶点。鸟苷是一种基于鸟嘌呤的嘌呤,在各种中枢神经系统(CNS)疾病中已显示出神经保护特性。因此,本研究旨在使用C6星形胶质细胞,在葡萄糖剥夺模型中评估鸟苷的潜在神经胶质保护作用,重点关注氧化还原失衡、炎症和营养反应,以及与这些作用相关的假定信号机制。C6星形胶质细胞在正常葡萄糖条件下培养,然后在有或没有鸟苷(100µM)的情况下进行葡萄糖剥夺(不含葡萄糖的培养基)12小时。通过ELISA、RT-PCR、比色法和荧光测定法评估细胞因子水平、氧化应激标志物、线粒体功能以及NFκB、Nrf2/HO-1和PI3K/Akt信号传导。葡萄糖剥夺诱导神经胶质功能障碍,特别是炎症反应、氧化还原稳态和细胞保护/存活信号通路的变化。鸟苷可防止葡萄糖剥夺诱导的NFκB激活,减少炎症标志物(如TNF-α、IL-1β)并恢复S100B分泌。鸟苷还上调Nrf2/HO-1表达,提高抗氧化酶活性,减轻氧化应激,并维持线粒体膜电位。此外,鸟苷恢复PI3K/Akt表达并调节神经胶质衍生因子,包括GDNF和TGF-β。通过调节NFκB、Nrf2/HO-1和PI3K/Akt途径,鸟苷提供了一种有前景的神经胶质保护策略,以减轻低血糖期间星形胶质细胞的损伤,潜在地减少中枢神经系统损伤和相关的神经退行性变。