Wang Kevin Y, Farid Alexander R, Comtesse Simon, von Keudell Arvind G
Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Institute for Biomechanics, ETH Zurich, Zurich, Schweiz.
3D Print Med. 2025 Jul 21;11(1):39. doi: 10.1186/s41205-025-00284-9.
BACKGROUND: Finite Element Analysis (FEA) has evolved into a crucial tool in orthopaedic trauma research and clinical practice. This review explores the broad applications of FEA in orthopedic surgery. MAIN BODY: FEA involves several steps, including geometry representation, segmentation, 3D rendering, meshing, material property assignment, defining boundary conditions, and specifying contact conditions. The process utilizes patient-specific volumetric data-computed tomography (CT) scan, for example-and aims for a balance between computational efficiency and accuracy. FEA provides valuable outcome measures such as stress distribution, strain quantification, fracture gap motion, failure prediction, and implant stability. These measures aid in evaluating fracture fixation techniques, implant design, and the impact of different fixation strategies. FEA has found applications in femur and proximal humerus fracture fixation, distal femur fracture planning, tibial plateau fractures, and post-traumatic osteoarthritis. It plays a pivotal role in predicting fracture risk, assessing construct stability, and informing surgical decision-making. Additionally, FEA facilitates the development of custom surgical planning and personalized implants. To enhance accuracy, FEA is combined with cadaveric biomechanical analysis, providing a reference-standard representation of in vivo kinematics. Future research should focus on refining FEA models through increased validation using cadaveric models and clinical data. CONCLUSION: FEA has revolutionized orthopaedic trauma research by offering insights into biomechanics, fracture fixation, and implant design. Integration with cadaveric biomechanical analysis enhances accuracy. Further validation efforts and integration into regular clinical practice are essential for realizing FEA's full potential in individualized patient care. The combination of FEA and cadaveric analysis contributes to a comprehensive understanding of in vivo kinematics, ultimately improving patient outcomes.
背景:有限元分析(FEA)已发展成为骨科创伤研究和临床实践中的关键工具。本综述探讨了FEA在骨科手术中的广泛应用。 主体:FEA涉及多个步骤,包括几何表示、分割、三维渲染、网格划分、材料属性赋值、定义边界条件和指定接触条件。该过程利用患者特定的容积数据,例如计算机断层扫描(CT)扫描,旨在在计算效率和准确性之间取得平衡。FEA提供了有价值的结果测量,如应力分布、应变量化、骨折间隙运动、失效预测和植入物稳定性。这些测量有助于评估骨折固定技术、植入物设计以及不同固定策略的影响。FEA已应用于股骨和肱骨近端骨折固定、股骨远端骨折规划、胫骨平台骨折以及创伤后骨关节炎。它在预测骨折风险、评估结构稳定性和为手术决策提供信息方面发挥着关键作用。此外,FEA有助于制定定制的手术规划和个性化植入物。为提高准确性,FEA与尸体生物力学分析相结合,提供体内运动学的参考标准表示。未来的研究应集中于通过使用尸体模型和临床数据进行更多验证来完善FEA模型。 结论:FEA通过提供对生物力学、骨折固定和植入物设计的见解,彻底改变了骨科创伤研究。与尸体生物力学分析相结合可提高准确性。进一步的验证工作以及融入常规临床实践对于实现FEA在个性化患者护理中的全部潜力至关重要。FEA与尸体分析的结合有助于全面了解体内运动学,最终改善患者预后。
3D Print Med. 2025-7-21
Front Bioeng Biotechnol. 2025-6-11
J Clin Orthop Trauma. 2024-11-7
2025-1
Front Bioeng Biotechnol. 2023-6-14
J Mech Behav Biomed Mater. 2022-10
J Funct Biomater. 2021-7-31