Tannus Julia, Alves Camille, Valentini Caroline, Morere Yann, Bourhis Guy, Pino Pierre, Naves Eduardo
IEEE Trans Neural Syst Rehabil Eng. 2025;33:2882-2891. doi: 10.1109/TNSRE.2025.3591104.
Stroke is a leading contributor to long-term disability worldwide, and rehabilitation often relies on costly devices, limited infrastructure, or labor-intensive protocols. While virtual reality-based exergames have gained popularity for promoting patient engagement, most rely on proprietary sensors or wearable electronics, limiting accessibility and clinical adaptability. This study presents the design, implementation, and pilot evaluation of a custom exergame that estimates the 3D elbow angle using a single RGB camera and two colored spheres as markers, eliminating the need for specialized hardware. The proposed system performs camera calibration, color segmentation, geometric 3D reconstruction, and real-time elbow angle estimation using low-cost equipment. Extensive technical tests revealed robust performance, with angular errors below 5° for joint amplitudes under 110°, and consistent accuracy across different lighting conditions, marker sizes, and distances. Additional tests showed that excessive sphere velocity (>20 cm/s) or proximity to image corners increased error due to motion blur and lens distortion, respectively. The system outperformed the AI-based MediaPipe framework in occluded-arm scenarios. Regression analysis showed strong correlation (r =0.70) between movement velocity and angular error. Usability testing with eight post-stroke participants yielded a mean SUS score of 92.5/100. The proposed solution is a promising alternative for home-based, sensor-free rehabilitation, supporting personalized exercise routines and remote progress monitoring.
中风是全球长期残疾的主要原因之一,康复通常依赖于昂贵的设备、有限的基础设施或劳动密集型方案。虽然基于虚拟现实的运动游戏在促进患者参与方面越来越受欢迎,但大多数都依赖于专有传感器或可穿戴电子产品,限制了可及性和临床适应性。本研究介绍了一款定制运动游戏的设计、实现和初步评估,该游戏使用单个RGB摄像头和两个彩色球体作为标记来估计三维肘部角度,无需专门的硬件。所提出的系统使用低成本设备进行相机校准、颜色分割、几何三维重建和实时肘部角度估计。广泛的技术测试显示出强大的性能,对于小于110°的关节幅度,角度误差低于5°,并且在不同的光照条件、标记尺寸和距离下具有一致的准确性。额外的测试表明,球体速度过高(>20厘米/秒)或靠近图像角落分别会由于运动模糊和镜头畸变而增加误差。在手臂被遮挡的场景中,该系统的表现优于基于人工智能的MediaPipe框架。回归分析表明运动速度与角度误差之间存在强相关性(r = 0.70)。对八名中风后参与者进行的可用性测试得出的系统可用性量表(SUS)平均得分为92.5/100。所提出的解决方案是家庭无传感器康复的一个有前途的替代方案,支持个性化的锻炼程序和远程进展监测。