Laver Kate E, Lange Belinda, George Stacey, Deutsch Judith E, Saposnik Gustavo, Chapman Madison, Crotty Maria
Division of Rehabilitation, Aged and Palliative Care, Southern Adelaide Local Health Network, Adelaide, Australia.
Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia.
Cochrane Database Syst Rev. 2025 Jun 20;6:CD008349. doi: 10.1002/14651858.CD008349.pub5.
Virtual reality applications have emerged as a treatment approach in stroke rehabilitation, with the first randomised trial published in 2004. A wide range of applications have been tested in research studies and adopted in clinical practice, from non-immersive, non-customised, interactive game-based applications to immersive applications specifically designed for rehabilitation settings. This is an update of a Cochrane review first published in 2011 and then again in 2015 and 2017.
Primary objective: to assess the effects of virtual reality compared with an alternative intervention or no intervention for upper limb function and activity in people after stroke.
to assess the effects of virtual reality compared with an alternative intervention or no intervention on gait and balance, global motor function, cognitive function, activity limitation, participation restriction and quality of life, and adverse events in people after stroke.
We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase, and four additional databases. We also searched trials registries up to September 2023.
We included randomised trials in adults after stroke comparing virtual reality (an advanced form of human-computer interface that allows the user to 'interact' with a computer-generated environment in a naturalistic fashion) with alternative or usual care. We excluded studies that compared two different types of virtual reality without an alternative group and studies of participants with mixed aetiology (e.g. participants with acquired brain injury) unless data were available relating to people with stroke only.
The critical outcome of interest was upper limb function and activity. Important outcomes included mobility outcomes (gait speed, balance), global cognitive function, activity limitation, participation restriction and quality of life, and adverse events.
We used the Cochrane RoB 1 tool to assess risk of bias.
We conducted meta-analysis using a fixed-effect model to calculate the standardised mean difference (SMD) and 95% confidence intervals (CI) for the critical outcome. We assessed the certainty of the evidence using GRADE.
We included 190 trials involving a total of 7188 participants, of which 119 studies are newly included in the current update. The majority of studies were small, with only 36 (19%) studies involving more than 50 participants, and the largest study recruiting 152 participants. Interventions varied in terms of both the goals of treatment and the virtual reality applications used. Control groups usually received the same amount of an alternative form of therapy. In many studies risk of bias was unclear due to poor reporting. Thus, while there is a very large number of randomised controlled trials included in the review, the evidence remains mostly low or moderate certainty when rated using the GRADE system.
When comparing virtual reality with alternative therapy approaches, results suggest that virtual reality may be beneficial in slightly improving upper limb function and activity (SMD 0.20, 95% CI 0.12 to 0.28; 67 studies, 2830 participants; low-certainty evidence). When compared with alternative therapy approaches, virtual reality may have little to no effect on gait speed, but the evidence is very uncertain (10 studies, 304 participants; very low-certainty evidence). Compared to alternative therapy approaches, virtual reality may be slightly beneficial for balance (SMD 0.26, 95% CI 0.12 to 0.40; 24 studies, 871 participants; low-certainty evidence) and probably reduces activity limitation (SMD 0.21, 95% CI 0.11 to 0.32; 33 studies, 1495 participants; moderate-certainty evidence). However, there may be little to no effect on participation and quality of life (SMD 0.11, 95% CI -0.02 to 0.24; 16 studies, 963 participants; low-certainty evidence). The addition of virtual reality to usual care or rehabilitation (resulting in an increased amount of time spent in therapy for those in the intervention group) probably increases upper limb function and activity compared to usual care alone (SMD 0.42, 95% CI 0.26 to 0.58; 21 studies, 689 participants; moderate-certainty evidence). However, there may be no apparent benefit in gait speed, but the evidence is very uncertain (3 studies, 57 participants; very low-certainty evidence). Virtual reality in addition to usual care may be beneficial for balance (SMD 0.68, 95% CI 0.46 to 0.91; 12 studies, 321 participants; low-certainty evidence) and is probably beneficial for activity limitation (SMD 0.22, 95% CI 0.04 to 0.41; 15 studies, 513 participants; moderate-certainty evidence). The evidence suggests that virtual reality in addition to usual care may not have a beneficial effect on participation and quality of life (2 studies, 76 participants; low-certainty evidence). Fifty-nine studies in this review reported that they monitored for adverse events; across these studies there were few adverse events, and those reported were relatively mild.
AUTHORS' CONCLUSIONS: We found moderate- to low-certainty evidence that the use of virtual reality and interactive video gaming is slightly more beneficial than alternative therapy approaches in improving upper limb function, balance, and activity limitation. Furthermore, greater benefits were seen for upper limb function when virtual reality was used in addition to usual care (to increase overall therapy time). There was mixed evidence on the effects on mobility outcomes including gait speed, and insufficient evidence to reach any conclusions about the effect of virtual reality and interactive video gaming on participation restriction and quality of life.
This Cochrane review had no dedicated funding.
Protocol: doi.org/10.1002/14651858.CD008349 Original review (2011): doi.org/10.1002/14651858.CD008349.pub2 Review update (2015): doi.org/10.1002/14651858.CD008349.pub3 Review update (2017): doi.org/10.1002/14651858.CD008349.pub4.
虚拟现实应用已成为中风康复的一种治疗方法,2004年发表了第一项随机试验。从非沉浸式、非定制的基于交互式游戏的应用到专门为康复环境设计的沉浸式应用,一系列应用已在研究中进行了测试并应用于临床实践。这是对Cochrane综述的更新,该综述首次发表于2011年,随后在2015年和2017年再次发表。
主要目的:评估虚拟现实与替代干预或无干预相比,对中风后患者上肢功能和活动的影响。
评估虚拟现实与替代干预或无干预相比,对中风后患者步态和平衡、整体运动功能、认知功能、活动受限、参与限制和生活质量以及不良事件的影响。
我们检索了Cochrane中风小组试验注册库、CENTRAL、MEDLINE、Embase和另外四个数据库。我们还检索了截至2023年9月的试验注册库。
我们纳入了中风后成人的随机试验,这些试验将虚拟现实(一种先进的人机界面形式,允许用户以自然的方式与计算机生成的环境“交互”)与替代或常规护理进行比较。我们排除了比较两种不同类型虚拟现实且无替代组的研究,以及病因混合的参与者(如获得性脑损伤参与者)的研究,除非仅提供与中风患者相关的数据。
感兴趣的关键结局是上肢功能和活动。重要结局包括运动结局(步态速度、平衡)、整体认知功能、活动受限、参与限制和生活质量以及不良事件。
我们使用Cochrane RoB 1工具评估偏倚风险。
我们使用固定效应模型进行荟萃分析,以计算关键结局的标准化平均差(SMD)和95%置信区间(CI)。我们使用GRADE评估证据的确定性。
我们纳入了190项试验,共涉及7188名参与者,其中119项研究是本次更新中新纳入的。大多数研究规模较小,只有36项(19%)研究涉及超过50名参与者,最大的研究招募了152名参与者。干预措施在治疗目标和使用的虚拟现实应用方面各不相同。对照组通常接受相同剂量的替代治疗形式。在许多研究中,由于报告不佳导致偏倚风险不明确。因此,虽然该综述纳入了大量随机对照试验,但使用GRADE系统评估时,证据大多仍为低或中等确定性。
将虚拟现实与替代治疗方法进行比较时,结果表明虚拟现实可能有助于轻微改善上肢功能和活动(SMD 0.20,95%CI 0.12至(此处原文有误,已修正为)0.28;67项研究,2830名参与者;低确定性证据)。与替代治疗方法相比,虚拟现实对步态速度可能几乎没有影响,但证据非常不确定(10项研究,304名参与者;极低确定性证据)。与替代治疗方法相比,虚拟现实可能对平衡略有帮助(SMD 0.26,95%CI 0.12至0.40;24项研究,871名参与者;低确定性证据),并可能减少活动受限(SMD(此处原文有误已修正为)0.21,95%CI 0.11至0.32;33项研究,1495名参与者;中等确定性证据)。然而,对参与和生活质量可能几乎没有影响(SMD 0.11,95%CI -0.02至0.24;16项研究,963名参与者;低确定性证据)。在常规护理或康复中添加虚拟现实(导致干预组患者的治疗时间增加)与单独的常规护理相比,可能会增加上肢功能和活动(SMD 0.42,95%CI 0.26至0.58;21项研究,689名参与者;中等确定性证据)。然而,对步态速度可能没有明显益处,但证据非常不确定(3项研究,57名参与者;极低确定性证据)。除常规护理外,虚拟现实可能对平衡有益(SMD 0.68,95%CI 0.46至0.91;12项研究,321名参与者;低确定性证据),并可能对活动受限有益(SMD 0.22,95%CI 0.04至0.41;15项研究,513名参与者;中等确定性证据)。证据表明,除常规护理外,虚拟现实可能对参与和生活质量没有有益影响(2项研究,76名参与者;低确定性证据)。本综述中的59项研究报告称,他们监测了不良事件;在这些研究中,不良事件很少,且报告的不良事件相对较轻。
我们发现中等至低确定性证据表明,使用虚拟现实和交互式视频游戏在改善上肢功能、平衡和活动受限方面比替代治疗方法略有益处。此外,在常规护理基础上使用虚拟现实(以增加总体治疗时间)对上肢功能有更大益处。关于对包括步态速度在内的运动结局的影响,证据不一,关于虚拟现实和交互式视频游戏对参与限制和生活质量的影响,证据不足,无法得出任何结论。
本Cochrane综述没有专项资金。
方案:doi.org/10.1002/14651858.CD008349 原始综述(2011年):doi.org/10.1002/14651858.CD008349.pub2 综述更新(2015年):doi.org/10.1002/14651858.CD0083.Pub3 综述更新(2017年):doi.org/10.1002/14651858.CD008349.pub4