Sun Yuhui, Han Junnan, Wang Min, Li Zhihuan, Lin Zijie, Chen Shimin, Zhang Zehui, Yang Shijie, Yu Linwei, Yu Zhongwei, Zhang Guangbin, Li Wei, Mao Songke, Song Hucheng, Xu Jun, Chen Kunji
School of Electronics Science and Engineering and National Laboratory of Solid State Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electrical Materials, Nanjing University, Nanjing 210093, P. R. China.
School of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210093, P. R. China.
J Phys Chem Lett. 2025 Jul 31;16(30):7649-7658. doi: 10.1021/acs.jpclett.5c01637. Epub 2025 Jul 21.
The global energy crisis and unsustainable reliance on fossil fuels make it particularly urgent to develop efficient renewable energy storage solutions. Aqueous zinc-air batteries (ZABs) have become extremely promising candidates due to their low cost, abundant surface resources, inherent safety, and high theoretical energy density. This study explores the feasibility of using seawater as an electrolyte for ZABs, with the aim to reduce costs and alleviate competition for limited freshwater resources. Research results indicate that ZABs using seawater electrolytes with varying salinities (1.4-10%) show good bifunctional catalytic performance in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) with defect-driven CoO-MoS bifunctional catalysts, while maintaining strong catalytic activity and stability in nonextreme salinity environments. The assembled ZABs with defect-driven CoO-MoS bifunctional catalysts display a charge-discharge voltage difference of less than 1.1 V, can stably operate for more than 360 cycles at a current density of 5 mA/cm, and exhibit strong tolerance to halogen ions, with performance comparable to that of batteries using conventional deionized water-based electrolytes. These findings underscore the feasibility of seawater-based ZABs, breaking through the limitations of traditional deionized water-based electrolytes and expanding the application prospects of aqueous ZABs in the realm of sustainable energy storage.
全球能源危机以及对化石燃料的不可持续依赖使得开发高效的可再生能源存储解决方案变得尤为紧迫。水系锌空气电池(ZABs)因其低成本、丰富的表面资源、固有的安全性以及高理论能量密度,已成为极具潜力的候选者。本研究探索了将海水用作ZABs电解质的可行性,旨在降低成本并缓解对有限淡水资源的竞争。研究结果表明,使用不同盐度(1.4 - 10%)海水电解质的ZABs,在缺陷驱动的CoO - MoS双功能催化剂作用下,在析氧反应(OER)和氧还原反应(ORR)中表现出良好的双功能催化性能,同时在非极端盐度环境中保持较强的催化活性和稳定性。采用缺陷驱动的CoO - MoS双功能催化剂组装的ZABs,其充放电电压差小于1.1 V,在5 mA/cm的电流密度下可稳定运行超过360个循环,并且对卤素离子具有较强的耐受性,性能与使用传统去离子水基电解质的电池相当。这些发现强调了基于海水的ZABs的可行性,突破了传统去离子水基电解质的限制,拓展了水系ZABs在可持续能源存储领域的应用前景。