Hsu Ting-Chen Chloe, Yimer Belay B, Whelan Pauline, Armitage Christopher J, Druce Katie, McBeth John
Centre for Musculoskeletal Research, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom, 44 161-306-6000.
Centre for Health Informatics, Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, United Kingdom.
JMIR Mhealth Uhealth. 2025 Jul 21;13:e64889. doi: 10.2196/64889.
Mobile health (mHealth) technologies, such as smartphones and wearables, enable continuous assessments of individual health information. In chronic musculoskeletal conditions, pain flares, defined as periods of increased pain severity, often coincide with worsening disease activity and cause significant impacts on physical and emotional well-being. Using mHealth technologies can provide insights into individual pain patterns and associated factors.
This study aims to characterize pain flares and identify associated factors in rheumatoid arthritis (RA) by (1) describing the frequency and duration of pain flares using progressively stringent definitions based on pain severity, and (2) exploring associations between pain flares and temporal changes in symptoms across emotional, cognitive, and behavioral domains.
Our 30-day mHealth study collected daily pain severity and related symptoms (scores 1-5, higher are worse) via a smartphone app and passively recorded sleep and physical activity via a wrist-worn accelerometer. Pain flares were defined using a 5-point scale: (1) above average (AA): pain severity > personal median, (2) above threshold (AT): pain severity > 3, and (3) move above threshold (MAT): pain severity moves from 1, 2, 3 to 4 or 5. A case-crossover analysis compared within-person variations of daily symptoms across hazard (3 days before a pain flare) and control (3 days not preceding a pain flare) periods using mean and intraindividual standard deviation. Conditional logistic regression estimated the odds ratio (OR) for pain flare occurrence.
A total of 195 participants (160/195, 82.1% females; mean age 57.2 years; average years with RA: 11.3) contributed 5290 days of data. Of these, 88.7% (173/195) experienced at least 1 AA flare (median monthly rate 4, IQR 2.1-5). Nearly half experienced at least 1 AT or MAT flare (median monthly rate 2, IQR 1-4). These pain flares lasted 2 days (IQR 2-3) on average across definitions, with some extending up to 12 days. Worsening mood over 3 days was associated with a 2-fold increase in the likelihood of AT flares the following day (OR 2.04, IQR 1.06-3.94; P<.05). Greater variability in anxiety over 3 days increased the likelihood of both AT (OR 1.67, IQR 1.01-2.78; P<.05) and MAT flares (OR 1.82, IQR 1.08-3.07; P<.05). Similarly, greater variability in sleepiness (OR 1.89, IQR 1.03-3.47; P<.05) also increased the likelihood of AT flares. Sedentary time (%) consistently showed almost no influence across all definitions. Similarly, the simplest definition of AA demonstrated no significant associations across all symptoms.
Pain flares were commonly observed in RA. Changes in sleep patterns and emotional distress were associated with pain flare occurrences. This analysis demonstrates the potential of daily mHealth data to identify pain flares, opening opportunities for timely monitoring and personalized management.
移动健康(mHealth)技术,如智能手机和可穿戴设备,能够持续评估个人健康信息。在慢性肌肉骨骼疾病中,疼痛发作(定义为疼痛严重程度增加的时期)通常与疾病活动恶化同时发生,并对身体和情绪健康产生重大影响。使用移动健康技术可以深入了解个体疼痛模式及相关因素。
本研究旨在通过以下方式描述类风湿关节炎(RA)中的疼痛发作特征并确定相关因素:(1)使用基于疼痛严重程度的逐步严格定义来描述疼痛发作的频率和持续时间;(2)探索疼痛发作与情绪、认知和行为领域症状的时间变化之间的关联。
我们为期30天的移动健康研究通过智能手机应用程序收集每日疼痛严重程度及相关症状(评分1 - 5,分数越高情况越糟),并通过佩戴在手腕上的加速度计被动记录睡眠和身体活动情况。疼痛发作使用5分制进行定义:(1)高于平均水平(AA):疼痛严重程度>个人中位数;(2)高于阈值(AT):疼痛严重程度>3;(3)升至阈值以上(MAT):疼痛严重程度从1、2、3升至4或5。病例交叉分析使用均值和个体内标准差比较了危险时期(疼痛发作前3天)和对照时期(非疼痛发作前3天)内每日症状的个体内变化。条件逻辑回归估计疼痛发作发生的比值比(OR)。
共有195名参与者(160/195,82.1%为女性;平均年龄57.2岁;患RA的平均年限:11.3年)贡献了5290天的数据。其中,88.7%(173/195)经历过至少1次AA发作(每月发作中位数为4次,四分位距为2.1 - 5次)。近一半的人经历过至少1次AT或MAT发作(每月发作中位数为2次,四分位距为1 - 4次)。这些疼痛发作在所有定义下平均持续2天(四分位距为2 - 3天),有些发作持续长达12天。3天内情绪恶化与次日AT发作的可能性增加2倍相关(OR为2.04,四分位距为1.06 - 3.94;P <.05)。3天内焦虑程度变化更大增加了AT发作(OR为1.67,四分位距为1.01 - 2.78;P <.05)和MAT发作(OR为1.82,四分位距为1.08 - 3.07;P <.05)的可能性。同样,嗜睡程度变化更大(OR为1.89,四分位距为1.03 - 3.47;P <.05)也增加了AT发作的可能性。久坐时间(%)在所有定义下始终几乎没有影响。同样,AA的最简单定义在所有症状中均未显示出显著关联。
在类风湿关节炎中常见疼痛发作。睡眠模式和情绪困扰的变化与疼痛发作的发生相关。该分析证明了每日移动健康数据在识别疼痛发作方面的潜力,为及时监测和个性化管理提供了机会。