Huang Liwen, Wong Tsz-Fung, Cheng Qipeng, So Pui-Kin, Liu Ming, Li Xuechen, Chen Sheng, Yao Zhong-Ping
Department of Applied Biology and Chemical Technology, Food Safety and Technology Research Centre, and Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China.
State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), and Shenzhen Key Laboratory of Food Biological Safety Control, Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
J Am Chem Soc. 2025 Jul 30;147(30):26389-26401. doi: 10.1021/jacs.5c05669. Epub 2025 Jul 21.
The emergence of metallo-β-lactamases as formidable adversaries in the antimicrobial resistance crisis stems from their unparalleled capacity to hydrolyze β-lactam antibiotics. This study deciphers the evolutionary strategy of New Delhi metallo-β-lactamase (NDM) variants through studies of conformational dynamics. We employ hydrogen/deuterium exchange mass spectrometry (HDX-MS) to map conformational landscapes of NDM in the ligand-free state and in the bound states with inhibitors l-captopril, d-captopril, ebselen, and aspergillomarasmine A (AMA), respectively. Crucially, our findings reveal similar allosteric fingerprints corresponding to different inhibition mechanisms; that is, inhibition induces pronounced dynamic perturbations in the α3-L8-β8 region─a previously under-characterized region. Strikingly, the clinically prevalent M154L mutation in this region reshapes conformational flexibility, amplifying inhibitor-specific conformational responses without altering the l/d-captopril binding dynamics. This study demonstrates how a single mutation can be critical for antibiotic resistance evolution where zinc is scarce in the presence of AMA and ebselen, as indicated by more protected HDX patterns of the α3-L8 region and several active-site loop (ASL) regions. Our results establish three key advances: (1) identification of α3-L8 as a cryptic allosteric region governing conformational adaptability, (2) demonstration of a single mutation M154L rewiring long-range dynamic communication, and (3) proposal of conformation-guided inhibitor design as a viable strategy against NDM. Overall, this work unveils a novel perspective─resistance mutations function not merely as chemical optimizers but as allosteric modulators that exploit inherent protein plasticity. These insights position the α3-L8 region as a compelling target for developing novel inhibitors, providing a blueprint for combating the next frontier of antimicrobial resistance.
金属β-内酰胺酶成为抗微生物药物耐药性危机中 formidable adversaries,源于其水解β-内酰胺抗生素的无与伦比的能力。本研究通过构象动力学研究来 decipher the evolutionary strategy of 新德里金属β-内酰胺酶(NDM)变体。我们采用氢/氘交换质谱(HDX-MS)分别绘制NDM在无配体状态以及与抑制剂l-卡托普利、d-卡托普利、依布硒仑和曲霉抑酶素A(AMA)结合状态下的构象图谱。至关重要的是,我们的研究结果揭示了与不同抑制机制相对应的相似别构指纹;也就是说,抑制作用会在α3-L8-β8区域(一个此前表征不足的区域)引起明显的动态扰动。引人注目的是,该区域临床上普遍存在的M154L突变重塑了构象灵活性,增强了抑制剂特异性构象反应,同时不改变l/d-卡托普利的结合动力学。本研究表明,在AMA和依布硒仑存在的情况下,当锌含量稀少时,单个突变对于抗生素耐药性进化可能至关重要,α3-L8区域和几个活性位点环(ASL)区域更受保护的HDX模式表明了这一点。我们的结果取得了三项关键进展:(1)确定α3-L8为控制构象适应性的隐秘别构区域,(2)证明单个突变M154L重新连接了远程动态通信,(3)提出构象引导的抑制剂设计作为对抗NDM的可行策略。总体而言,这项工作揭示了一个新的视角——耐药性突变不仅起化学优化剂的作用,还作为利用蛋白质固有可塑性的别构调节剂。这些见解将α3-L8区域定位为开发新型抑制剂的有吸引力的靶点,为对抗抗微生物药物耐药性的下一个前沿领域提供了蓝图。