Bracher-Smith Matthew, Melograna Federico, Ulm Brittany, Bellenguez Céline, Grenier-Boley Benjamin, Duroux Diane, Nevado Alejo J, Holmans Peter, Tijms Betty M, Hulsman Marc, de Rojas Itziar, Campos-Martin Rafael, der Lee Sven van, Castillo Atahualpa, Küçükali Fahri, Peters Oliver, Schneider Anja, Dichgans Martin, Rujescu Dan, Scherbaum Norbert, Deckert Jürgen, Riedel-Heller Steffi, Hausner Lucrezia, Molina-Porcel Laura, Düzel Emrah, Grimmer Timo, Wiltfang Jens, Heilmann-Heimbach Stefanie, Moebus Susanne, Tegos Thomas, Scarmeas Nikolaos, Dols-Icardo Oriol, Moreno Fermin, Pérez-Tur Jordi, Bullido María J, Pastor Pau, Sánchez-Valle Raquel, Álvarez Victoria, Boada Mercè, García-González Pablo, Puerta Raquel, Mir Pablo, Real Luis M, Piñol-Ripoll Gerard, García-Alberca Jose María, Rodriguez-Rodriguez Eloy, Soininen Hilkka, Heikkinen Sami, de Mendonça Alexandre, Mehrabian Shima, Traykov Latchezar, Hort Jakub, Vyhnalek Martin, Sandau Nicolai, Thomassen Jesper Qvist, Pijnenburg Yolande A L, Holstege Henne, van Swieten John, Ramakers Inez, Verhey Frans, Scheltens Philip, Graff Caroline, Papenberg Goran, Giedraitis Vilmantas, Williams Julie, Amouyel Philippe, Boland Anne, Deleuze Jean-François, Nicolas Gael, Dufouil Carole, Pasquier Florence, Hanon Olivier, Debette Stéphanie, Grünblatt Edna, Popp Julius, Ghidoni Roberta, Galimberti Daniela, Arosio Beatrice, Mecocci Patrizia, Solfrizzi Vincenzo, Parnetti Lucilla, Squassina Alessio, Tremolizzo Lucio, Borroni Barbara, Wagner Michael, Nacmias Benedetta, Spallazzi Marco, Seripa Davide, Rainero Innocenzo, Daniele Antonio, Piras Fabrizio, Masullo Carlo, Rossi Giacomina, Jessen Frank, Kehoe Patrick, Magda Tsolaki, Sánchez-Juan Pascual, Sleegers Kristel, Ingelsson Martin, Hiltunen Mikko, Sims Rebecca, van der Flier Wiesje, Andreassen Ole A, Ruiz Agustín, Ramirez Alfredo, Frikke-Schmidt Ruth, Amin Najaf, Roshchupkin Gennady, Lambert Jean-Charles, Van Steen Kristel, van Duijn Cornelia, Escott-Price Valentina
School of Medicine, Cardiff University, Cardiff, UK.
Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK.
Nat Commun. 2025 Jul 22;16(1):6726. doi: 10.1038/s41467-025-61650-z.
Traditional statistical approaches have advanced our understanding of the genetics of complex diseases, yet are limited to linear additive models. Here we applied machine learning (ML) to genome-wide data from 41,686 individuals in the largest European consortium on Alzheimer's disease (AD) to investigate the effectiveness of various ML algorithms in replicating known findings, discovering novel loci, and predicting individuals at risk. We utilised Gradient Boosting Machines (GBMs), biological pathway-informed Neural Networks (NNs), and Model-based Multifactor Dimensionality Reduction (MB-MDR) models. ML approaches successfully captured all genome-wide significant genetic variants identified in the training set and 22% of associations from larger meta-analyses. They highlight 6 novel loci which replicate in an external dataset, including variants which map to ARHGAP25, LY6H, COG7, SOD1 and ZNF597. They further identify novel association in AP4E1, refining the genetic landscape of the known SPPL2A locus. Our results demonstrate that machine learning methods can achieve predictive performance comparable to classical approaches in genetic epidemiology and have the potential to uncover novel loci that remain undetected by traditional GWAS. These insights provide a complementary avenue for advancing the understanding of AD genetics.
传统统计方法增进了我们对复杂疾病遗传学的理解,但仅限于线性加性模型。在此,我们将机器学习(ML)应用于来自欧洲最大的阿尔茨海默病(AD)联盟中41686名个体的全基因组数据,以研究各种ML算法在复制已知发现、发现新位点以及预测风险个体方面的有效性。我们使用了梯度提升机(GBM)、生物通路信息神经网络(NN)和基于模型的多因素降维(MB-MDR)模型。ML方法成功捕捉到了训练集中所有全基因组显著的遗传变异以及来自更大规模荟萃分析的22%的关联。它们突出了6个在外部数据集中得到复制的新位点,包括映射到ARHGAP25、LY6H、COG7、SOD1和ZNF597的变异。它们还进一步确定了AP4E1中的新关联,完善了已知SPPL2A位点的遗传图谱。我们的结果表明,机器学习方法在遗传流行病学中能够实现与经典方法相当的预测性能,并且有潜力发现传统全基因组关联研究(GWAS)未检测到的新位点。这些见解为推进对AD遗传学的理解提供了一条补充途径。